Question

A normal population has a mean of 77 and a standard deviation of 5. You select...

A normal population has a mean of 77 and a standard deviation of 5. You select a sample of 48.

Compute the probability that the sample mean is: (Round your z values to 2 decimal places and final answers to 4 decimal places.)

A. less than 76

Probability:

B. Between 76 and 78

Probability:

C. Between 78 and 79

Probability:

D. Greater than 79

Probability:

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A normal population has a mean of 78 and a standard deviation of 9. You select...
A normal population has a mean of 78 and a standard deviation of 9. You select a sample of 57. Use Appendix B.1 for the z-values. Compute the probability that the sample mean is: (Round the z-values to 2 decimal places and the final answers to 4 decimal places.) a. Less than 77. Probability             b. Between 77 and 79. Probability             c. Between 79 and 81. Probability             d. Greater than 81. Probability            
A normal population has a mean of 77 and a standard deviation of 8. You select...
A normal population has a mean of 77 and a standard deviation of 8. You select a sample of 36. Use Appendix B.1 for the z-values. Compute the probability that the sample mean is: (Round the z-values to 2 decimal places and the final answers to 4 decimal places.) a. Less than 74. Probability b. Between 74 and 80. Probability c. Between 80 and 81. Probability d. Greater than 81. Probability
A normal population has a mean of 61 and a standard deviation of 4. You select...
A normal population has a mean of 61 and a standard deviation of 4. You select a sample of 38. Compute the probability that the sample mean is: (Round your z values to 2 decimal places and final answers to 4 decimal places.) Less than 60. Between 60 and 62. Between 62 and 63. Greater than 63.
A normal population has a mean of 89 and a standard deviation of 8. You select...
A normal population has a mean of 89 and a standard deviation of 8. You select a sample of 35. Use Appendix B.1 for the z-values. Compute the probability that the sample mean is: (Round the z-values to 2 decimal places and the final answers to 4 decimal places.) a. Less than 87. Probability b. Between 87 and 91 Probability c. Between 91 and 92. Probability d. Greater than 92. Probability
The mean of a population is 76 and the standard deviation is 13. The shape of...
The mean of a population is 76 and the standard deviation is 13. The shape of the population is unknown. Determine the probability of each of the following occurring from this population. a. A random sample of size 36 yielding a sample mean of 78 or more b. A random sample of size 120 yielding a sample mean of between 75 and 79 c. A random sample of size 219 yielding a sample mean of less than 76.7 (Round all...
How to calculate the following in Exel? PS: Exel! Normal population has a mean of 61...
How to calculate the following in Exel? PS: Exel! Normal population has a mean of 61 and a standard deviation of 13. You select a random sample of 16. Compute the probability the sample mean is:(Round z values to 2 decimal places and final answers to 4 decimal places.) (a) Greater than 64. (b) Less than 57. ( c) Between 57 and 64.
A normal population has a mean of 21 and a standard deviation of 5. a. Compute...
A normal population has a mean of 21 and a standard deviation of 5. a. Compute the Z value associated with 25 (round answer to 2 decimal places) b. What proportion of the population is between 21 and 25? (Round z-score computation to 2 decimal places and final answer to 4 decimal places) c. What proportion of the population is less than 17? (Round z-score computation to 2 decimal places and final answer to 4 decimal places)
A normal population has a mean of 20.0 and a standard deviation of 4.0. a). Compute...
A normal population has a mean of 20.0 and a standard deviation of 4.0. a). Compute the z value associated with 25.0. (Round your answer to 2 decimal places.) b). What proportion of the population is between 20.0 and 25.0? (Round z-score computation to 2 decimal places and your final answer to 4 decimal places.) c). What proportion of the population is less than 18.0? (Round z-score computation to 2 decimal places and your final answer to 4 decimal places.)
A normal population has a mean of 10.2 and a standard deviation of 1.4. Refer to...
A normal population has a mean of 10.2 and a standard deviation of 1.4. Refer to the table in Appendix B.1. a. Compute the z-value associated with 14.3. (Round the final answer to 2 decimal places.) z = b. What proportion of the population is between 10.2 and 14.3? (Round z-score computation to 2 decimal places and the final answer to 4 decimal places.) Proportion c. What proportion of the population is less than 10.0? (Round z-score computation to 2...
A normal population has a mean of 11.8 and a standard deviation of 4.6. Refer to...
A normal population has a mean of 11.8 and a standard deviation of 4.6. Refer to the table in Appendix B.1.   a. Compute the z-value associated with 14.3. (Round the final answer to 2 decimal places.) z =               b. What proportion of the population is between 11.8 and 14.3? (Round z-score computation to 2 decimal places and the final answer to 4 decimal places.) Proportion            c. What proportion of the population is less than 10.0?...