Question

Gibbs Baby Food Company wishes to compare the weight gain of infants using its brand versus...

Gibbs Baby Food Company wishes to compare the weight gain of infants using its brand versus its competitor's. A sample of 40 babies using the Gibbs products revealed a mean weight gain of 7.6 pounds in the first three months after birth. For the Gibbs brand, the population standard deviation of the sample is 2.3 pounds. A sample of 55 babies using the competitor's brand revealed a mean increase in weight of 8.1 pounds. The population standard deviation is 2.9 pounds.

  1. State the decision rule for 0.05 significance level : H0: μGibbs ≥ μCompetitor; H1: μGibbs < μCompetitor. (Negative value should be indicated by a minus sign. Round your answer to 2 decimal places.)

  1. Compute the value of the test statistic. (Negative value should be indicated by a minus sign. Round your answer to 2 decimal places.)

  1. Compute the p-value. (Round your answer to 4 decimal places.)

  1. Can we conclude that babies using the Gibbs brand gained less weight? Use the 0.05 significance level.

Homework Answers

Answer #1

a)

Decision rule :                   reject Ho if test statistic z<-1.64

b)

value of the test statistic z =-0.94

c)

p-value =0.1736

d)

as p value is greater than 0.05 level

we can not conclude that babies using the Gibbs brand gained less weight

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
he null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2...
he null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2 A random sample of 11 observations from one population revealed a sample mean of 24 and a sample standard deviation of 4.6. A random sample of 8 observations from another population revealed a sample mean of 29 and a sample standard deviation of 4.1. At the 0.05 significance level, is there a difference between the population means? State the decision rule. (Negative amounts should...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2 A random sample of 8 observations from one population revealed a sample mean of 23 and a sample standard deviation of 3.9. A random sample of 8 observations from another population revealed a sample mean of 28 and a sample standard deviation of 4.4. At the 0.05 significance level, is there a difference between the population means? State the decision rule. (Negative amounts should...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2 A random sample of 9 observations from one population revealed a sample mean of 22 and a sample standard deviation of 3.9. A random sample of 9 observations from another population revealed a sample mean of 27 and a sample standard deviation of 4.1. At the 0.01 significance level, is there a difference between the population means? State the decision rule. (Negative values should...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2 A random sample of 12 observations from one population revealed a sample mean of 24 and a sample standard deviation of 3.8. A random sample of 8 observations from another population revealed a sample mean of 28 and a sample standard deviation of 3.7. At the 0.01 significance level, is there a difference between the population means? State the decision rule. (Negative values should...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2 A random sample of 12 observations from one population revealed a sample mean of 23 and a sample standard deviation of 2.5. A random sample of 5 observations from another population revealed a sample mean of 25 and a sample standard deviation of 2.7. At the 0.10 significance level, is there a difference between the population means? State the decision rule. (Negative amounts should...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2 A random sample of 10 observations from one population revealed a sample mean of 23 and a sample standard deviation of 3.5. A random sample of 4 observations from another population revealed a sample mean of 27 and a sample standard deviation of 3.6. At the 0.01 significance level, is there a difference between the population means? State the decision rule. (Negative amounts should...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2 A random sample of 11 observations from one population revealed a sample mean of 25 and a sample standard deviation of 3.5. A random sample of 4 observations from another population revealed a sample mean of 29 and a sample standard deviation of 4.5. At the 0.01 significance level, is there a difference between the population means? State the decision rule. (Negative amounts should...
Watch Corporation of Switzerland claims that its watches on average will neither gain nor lose time...
Watch Corporation of Switzerland claims that its watches on average will neither gain nor lose time during a week. A sample of 18 watches provided the following gains (+) or losses (−) in seconds per week −0.25 −0.28 −0.14 −0.26 +0.27 −0.20 +0.32 +0.31 −0.14 −0.32 −0.65 −0.45 −0.50 −0.69 −0.04 −0.16 −0.53 +0.08 State the null hypothesis and the alternate hypothesis. State the decision rule for 0.01 significance level. (Negative amounts should be indicated by a minus sign. Round...
Watch Corporation of Switzerland claims that its watches on average will neither gain nor lose time...
Watch Corporation of Switzerland claims that its watches on average will neither gain nor lose time during a week. A sample of 18 watches provided the following gains (+) or losses (−) in seconds per week. −0.25 −0.28 −0.14 −0.26 +0.27 −0.20 +0.32 +0.31 −0.14 −0.32 −0.65 −0.45 −0.50 −0.69 −0.04 −0.16 −0.53 +0.08 State the null hypothesis and the alternate hypothesis. State the decision rule for 0.01 significance level. (Negative amounts should be indicated by a minus sign. Round...
Rutter Nursery Company packages its pine bark mulch in 50-pound bags. From a long history, the...
Rutter Nursery Company packages its pine bark mulch in 50-pound bags. From a long history, the production department reports that the distribution of the bag weights follows the normal distribution and the standard deviation of the packaging process is 3 pounds per bag. At the end of each day, Jeff Rutter, the production manager, weighs 10 bags and computes the mean weight of the sample. Below are the weights of 10 bags from today’s production. 45.6 47.7 47.6 46.3 46.2...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT