Question

Let a random variable X̄ represent the mean of a sample consisting of 16 observations. The...

Let a random variable X̄ represent the mean of a sample consisting of 16 observations. The sample mean equals 56 and the sample standard deviation equals 28.

I. Statistics Calculate the following:

1) Standard Error of the Mean = Answer

II. Probabilities

1) P(42 < X̄ < 56) = Answer %

2) P(X̄>=70) = Answer %

3) P(X̄<=70) = Answer %

Homework Answers

Answer #1

I)

1)

Standard error of the mean = / sqrt(n) = 28 / sqrt(16)

= 7

II)

1)

Using central limit theorem,

P( < x) = P( Z < x - /  )

P(42< < 56) = P( < 56) - P( < 42)

= P( Z < 56 - 56 / 7) - P( Z < 42 - 56 / 7)

= P( Z < 0) - P( Z < -2)

= 0.5 - 0.0228

= 0.4772

= 47.72%

b)

P( > 70) = P( Z > 70 - 56 / 7)

= P( Z > 2)

= 0.0228

= 2.28%

c)

P( < 70) = P( Z < 70 - 56 / 7)

= P( Z < 2)

= 0.9772

= 97.72%

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let the random variable X follow a distribution with a mean of μ and a standard...
Let the random variable X follow a distribution with a mean of μ and a standard deviation of σ. Let X1 be the mean of a sample of n1 (n1=1) observations randomly chosen from this population, and X2 be the mean of a sample of n2( n2 =49) observations randomly chosen from the same population. Which of the following statement is False? Evaluate the following statement.                                 P(μ - 0.2σ <X 1 < μ + 0.2σ) < P(μ - 0.2σ <X...
Let X be a random variable with a mean of 9 and a variance of 16....
Let X be a random variable with a mean of 9 and a variance of 16. Let Y be a random variable with a mean of 10 and a variance of 25. Suppose the population correlation coefficient between random variables X and Y is -0.4. a) Find the mean of the random variable W = 3X - 5Y. b) Find the standard deviation of the random variable Z = X + Y
1. A sampling distribution of the mean has a mean  μ  X̄ =45 μ  X̄ =45 and a standard...
1. A sampling distribution of the mean has a mean  μ  X̄ =45 μ  X̄ =45 and a standard error  σ  X̄ =7 σ  X̄ =7 based on a random sample of n=15.n=15. a. What is the population mean? b. What is the population standard deviation? Round to two decimal places if necessary 2. If it is appropriate to do so, use the normal approximation to the  p^  p^ -distribution to calculate the indicated probability: Standard Normal Distribution Table n=80,p=0.715n=80,p=0.715 P( p̂  > 0.75)P( p̂  > 0.75) = Enter 0...
A random sample X1,...,X300 is drawn from a population with a mean µ = 80 and...
A random sample X1,...,X300 is drawn from a population with a mean µ = 80 and standard deviation σ = 30 but unknown distribution. Let U = (X1 + ...+X100)/100 represent the sample mean of the first 100 observations and V = (X100 + ...+X300)/200 represent the sample mean of the last 200 observations. a[10 points] What are the approximate distributions of U and V ? b[10 points] Which probability would you expect to be larger, P(70 <= U <=...
A random sample X1,...,X300 is drawn from a population with a mean µ = 80 and...
A random sample X1,...,X300 is drawn from a population with a mean µ = 80 and standard deviation σ = 30 but unknown distribution. Let U = (X1 + ...+X100)/100 represent the sample mean of the first 100 observations and V = (X100 + ...+X300)/200 represent the sample mean of the last 200 observations. a[10 points] What are the approximate distributions of U and V ? b[10 points] Which probability would you expect to be larger, P(70 <= U <=...
A random sample of 11 observations was taken from a normal population. The sample mean and...
A random sample of 11 observations was taken from a normal population. The sample mean and standard deviation are xbar= 74.5 and s= 9. Can we infer at the 5% significance level that the population mean is greater than 70? I already found the test statistic (1.66) but I’m at a loss for how to find the p-value.
a simple random sample of size n is drawn. the sample mean, x̄, is found to...
a simple random sample of size n is drawn. the sample mean, x̄, is found to be 29.5 and the sample standard deviation, s, is found to be 8.4 a) construct a 90% confidence interval for μ if the sample size, n, is 40 b) construct a 90% confidence interval for μ if the sample size n is 100 c) how does increasing the sample size affect the margin of error, E
given normal random variable x with mean μ= 57.1 and standard deviation σ=13.2, what is P...
given normal random variable x with mean μ= 57.1 and standard deviation σ=13.2, what is P (46 < x̄ < 69) for a sample of size n= 16?
1. A random sample of n=100 observations is selected from a population with m=30 and s=16....
1. A random sample of n=100 observations is selected from a population with m=30 and s=16. Approximate the following probabilities. a. P( x-bar >= 28)     b. P(22.1<=x-bar<= 26.8) c. P( x-bar<= 28.2) d. P(x-bar>= 27.0) 2. A random sample of n=100 observations is selected from a population with m =100 and s=10. a. What are the largest and smallest values that you would expect to see in the 100 data points? b. What are the largest and smallest values you...
Suppose a random sample of n = 16 observations is selected from a population that is...
Suppose a random sample of n = 16 observations is selected from a population that is normally distributed with mean equal to 102 and standard deviation equal to 10. a) Give the mean and the standard deviation of the sampling distribution of the sample mean x. mean = standard deviation = b) Find the probability that x exceeds 106. (Round your answer to four decimal places.) c) Find the probability that the sample mean deviates from the population mean μ...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT