Let a random variable X̄ represent the mean of a sample consisting of 16 observations. The sample mean equals 56 and the sample standard deviation equals 28.
I. Statistics Calculate the following:
1) Standard Error of the Mean = Answer
II. Probabilities
1) P(42 < X̄ < 56) = Answer %
2) P(X̄>=70) = Answer %
3) P(X̄<=70) = Answer %
I)
1)
Standard error of the mean = / sqrt(n) = 28 / sqrt(16)
= 7
II)
1)
Using central limit theorem,
P( < x) = P( Z < x - / )
P(42< < 56) = P( < 56) - P( < 42)
= P( Z < 56 - 56 / 7) - P( Z < 42 - 56 / 7)
= P( Z < 0) - P( Z < -2)
= 0.5 - 0.0228
= 0.4772
= 47.72%
b)
P( > 70) = P( Z > 70 - 56 / 7)
= P( Z > 2)
= 0.0228
= 2.28%
c)
P( < 70) = P( Z < 70 - 56 / 7)
= P( Z < 2)
= 0.9772
= 97.72%
Get Answers For Free
Most questions answered within 1 hours.