Question

1. Consider the following hypothesis test: Ho: μ = 15 H1: μ ≠ 15 A sample...

1. Consider the following hypothesis test: Ho: μ = 15 H1: μ ≠ 15

A sample of 50 provided a sample mean of 15.15. The population standard deviation is 3.

a. Compute the value of the test statistic. b. What is the p value? c. At α = 0.05, what is the rejection rule using the critical value? What is your conclusion?

Homework Answers

Answer #1

Solution:

This is a two tailed test.

a)

The test statistics,

Z =( - )/ (/n)

= ( 15.15 - 15 ) / ( 3 / 50 )

= 0.35

b)

P-value = 2 * P(Z > z )

= 2 * ( 1 - P(Z < 0.35 ))

= 2 * 0.3632

= 0.7264

c)

Critical value of  the significance level is α = 0.05, and the critical value for a two-tailed test is

= 1.96

The rejection region is,

Reject H0. if |z| > 1.96

Since it is observed that ∣z∣ = 0.35 < = 1.96, it is then concluded that the null hypothesis is not rejected.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Consider the following hypothesis test: Ho : μ = 15 H1 : μ ≠ 15...
1. Consider the following hypothesis test: Ho : μ = 15 H1 : μ ≠ 15 A sample of 50 provided a sample mean of 15.15. The population standard deviation is 3. a. Compute the value of the test statistic. b. What is the p value? c. At α = 0.05, what is the rejection rule using the critical value? What is your conclusion? 2. Consider the following hypothesis test: Ho: μ ≤ 51 H1: μ > 51 A sample...
Consider the following hypothesis test. H0: μ = 15 Ha: μ ≠ 15 A sample of...
Consider the following hypothesis test. H0: μ = 15 Ha: μ ≠ 15 A sample of 58 provided a sample mean x  = 14 and a sample standard deviation s = 6.3. (a) Compute the value of the test statistic. (b) Use the t distribution table to compute a range for the p-value. (c) At α = 0.05, what is your conclusion? (d) What is the rejection rule using the critical value? What is your conclusion?
Consider the following hypothesis test for which a sample of 40 provided a mean of 16.5....
Consider the following hypothesis test for which a sample of 40 provided a mean of 16.5. Assume a population standard deviation of 7. H0: μ = 15 H1: μ > 15 a. At α = 0.02, what is the critical value for z, and what is the rejection rule? b. Compute the value of the test statistic z. c. What is the P-value? d. What is your conclusion?
Consider the following hypothesis test: H0: μ = 15 Ha: μ ≠ 15 A sample of...
Consider the following hypothesis test: H0: μ = 15 Ha: μ ≠ 15 A sample of 50 provided a sample mean of 14.18. The population standard deviation is 5. a. Compute the value of the test statistic (to 2 decimals). b. What is the p-value (to 4 decimals)? c. Using α = .05, can it be concluded that the population mean is not equal to 15? SelectYesNo Answer the next three questions using the critical value approach. d. Using α...
Consider the following hypothesis test: H0: μ = 15 Ha: μ ≠ 15 A sample of...
Consider the following hypothesis test: H0: μ = 15 Ha: μ ≠ 15 A sample of 50 provided a sample mean of 14.18. The population standard deviation is 6. a. Compute the value of the test statistic (to 2 decimals). b. What is the p-value (to 4 decimals)? c. Using α = .05, can it be concluded that the population mean is not equal to 15? SelectYesNoItem 3 Answer the next three questions using the critical value approach. d. Using...
Consider the following hypothesis test. H0: μ = 15 Ha: μ ≠ 15 A sample of...
Consider the following hypothesis test. H0: μ = 15 Ha: μ ≠ 15 A sample of 50 provided a sample mean of 14.07. The population standard deviation is 3. (a) Find the value of the test statistic. (Round your answer to two decimal places.) (b) Find the p-value. (Round your answer to four decimal places.) p-value = (c) At α = 0.05, state your conclusion. Reject H0. There is sufficient evidence to conclude that μ ≠ 15.Reject H0. There is...
Consider the following hypothesis test: H0: µ = 15 Ha: µ ≠ 15 A sample of...
Consider the following hypothesis test: H0: µ = 15 Ha: µ ≠ 15 A sample of 50 provided a sample mean of 14.15. The population standard deviation is 3. A.) Compute the value of the test statistic. (Round to two decimal places). B.) What is the p-value? (Round to three decimal places) C.) Using a=0.01, what is your conclusion? D.) Using the critical value approach for the 99% confidence level, what is the critical value? what is the rejection rule?...
#5.       Consider the following hypothesis test for the mean of a normally distributed population: Ho: μ=80....
#5.       Consider the following hypothesis test for the mean of a normally distributed population: Ho: μ=80. A random sample of size 40 is to be taken. The population standard deviation is 20. Write the rejection rule using critical value method; use α=4%. Please clearly identify the test-statistic (t or z or F etc).(15 points)
Consider the following hypothesis test for the mean of a normally distributed population: Ho: μ=80. A...
Consider the following hypothesis test for the mean of a normally distributed population: Ho: μ=80. A random sample of size 40 is to be taken. The population standard deviation is 20. Write the rejection rule using critical value method; use α=4%. Please clearly identify the test-statistic (t or z or F etc).
Consider the following hypothesis test for the mean of a normally distributed population: Ho: μ=80. A...
Consider the following hypothesis test for the mean of a normally distributed population: Ho: μ=80. A random sample of size 40 is to be taken. The population standard deviation is 20. Write the rejection rule using critical value method; use α=4%. Please clearly identify the test-statistic (t or z or F etc).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT