Question

The random variable X is distributed with pdf fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0....

The random variable X is distributed with pdf

fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0. (Please note the equation includes the term -(x/θ)2 )

a) What is the constant c?

b) We consider parameter θ is a number. What is MLE and MOM of θ? Assume you have an i.i.d. sample. Is MOM unbiased?

c) Please calculate the Cramer-Rao Lower Bound (CRLB). Compare the variance of MOM with Crameer-Rao Lower Bound (CRLB).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The random variable X is distributed with pdf fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0....
The random variable X is distributed with pdf fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0. (Please note the equation includes the term -(x/θ)2 ) Calculate the probability of X1 < X2, i.e. P(X1 < X2, θ).
The random variable X is distributed with pdf fX(x, θ) = (2/θ^2)*x*exp(-(x/θ)2), where x>0 and θ>0....
The random variable X is distributed with pdf fX(x, θ) = (2/θ^2)*x*exp(-(x/θ)2), where x>0 and θ>0. Please note the term within the exponential is -(x/θ)^2 and the first term includes a θ^2. a) Find the distribution of Y = (X1 + ... + Xn)/n where X1, ..., Xn is an i.i.d. sample from fX(x, θ). If you can’t find Y, can you find an approximation of Y when n is large? b) Find the best estimator, i.e. MVUE, of θ?
The random variable X is distributed with pdf fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0....
The random variable X is distributed with pdf fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0. Calculate the probability of X1 < X2, i.e. P(X1 < X2, θ).
Let X1, X2, . . . , Xn be iid random variables with pdf f(x|θ) =...
Let X1, X2, . . . , Xn be iid random variables with pdf f(x|θ) = θx^(θ−1) , 0 < x < 1, θ > 0. Is there an unbiased estimator of some function γ(θ), whose variance attains the Cramer-Rao lower bound?
Suppose the random variable X follows the Poisson P(m) PDF, and that you have a random...
Suppose the random variable X follows the Poisson P(m) PDF, and that you have a random sample X1, X2,...,Xn from it. (a)What is the Cramer-Rao Lower Bound on the variance of any unbiased estimator of the parameter m? (b) What is the maximum likelihood estimator ofm?(c) Does the variance of the MLE achieve the CRLB for all n?
Suppose X1,..., Xn are iid with pdf f(x;θ) = 2x / θ2, 0 < x ≤...
Suppose X1,..., Xn are iid with pdf f(x;θ) = 2x / θ2, 0 < x ≤ θ. Find I(θ) and the Cramér-Rao lower bound for the variance of an unbiased estimator for θ.
Let X1,...,Xn be iid exp(θ) rvs. (a) Compute the pdf of Xmin. I have the pdf...
Let X1,...,Xn be iid exp(θ) rvs. (a) Compute the pdf of Xmin. I have the pdf (b) Create an unbiased estimator for θ based on Xmin. Compute the variance of the resulting estimator. (c) Perform a Monte Carlo simulation of N= 10,0000 samples of your unbiased estimator from part (b) using θ = 2 and n = 100 to validate your answer. Include a histogram of the samples. (d) Which is more efficient: your estimator from part (b) or the...
Let X1,...,Xn be iid exp(θ) rvs. (a) Compute the pdf of Xmin. (b) Create an unbiased...
Let X1,...,Xn be iid exp(θ) rvs. (a) Compute the pdf of Xmin. (b) Create an unbiased estimator for θ based on Xmin. Compute the variance of the resulting estimator. (c) Perform a Monte Carlo simulation of N= 10,0000 samples of your unbiased estimator from part (b) using θ = 2 and n = 100 to validate your answer. Include a histogram of the samples. (d) Which is more efficient: your estimator from part (b) or the MLE for θ? (e)...
Let X_1,…, X_n  be a random sample from the Bernoulli distribution, say P[X=1]=θ=1-P[X=0]. and Cramer Rao Lower...
Let X_1,…, X_n  be a random sample from the Bernoulli distribution, say P[X=1]=θ=1-P[X=0]. and Cramer Rao Lower Bound of θ(1-θ) =((1-2θ)^2 θ(1-θ))/n Find the UMVUE of θ(1-θ) if such exists. can you proof [part (b) ] using (Leehmann Scheffe Theorem step by step solution) to proof [∑X1-nXbar^2 ]/(n-1) is the umvue , I have the key solution below x is complete and sufficient. S^2=∑ [X1-Xbar ]^2/(n-1) is unbiased estimator of θ(1-θ) since the sample variance is an unbiased estimator of the...
3. Let X be a continuous random variable with PDF fX(x) = c / x^1/2, 0...
3. Let X be a continuous random variable with PDF fX(x) = c / x^1/2, 0 < x < 1. (a) Find the value of c such that fX(x) is indeed a PDF. Is this PDF bounded? (b) Determine and sketch the graph of the CDF of X. (c) Compute each of the following: (i) P(X > 0.5). (ii) P(X = 0). (ii) The median of X. (ii) The mean of X.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT