For the data in the table below, assume a uniform distribution. Estimate the parameters for this distribution, and perform a Chi Squared goodness of fit test on what is assumed to be a uniform distribution.
6.40 |
4.39 |
6.86 |
5.24 |
4.01 |
5.54 |
4.50 |
5.69 |
5.85 |
5.42 |
5.94 |
6.78 |
6.52 |
5.82 |
6.46 |
4.65 |
4.20 |
5.25 |
6.58 |
4.73 |
6.53 |
4.99 |
5.90 |
5.51 |
6.50 |
The null hypothesis
H0: the data follow uniform distribution
Test statistic
where
Oi : observed frequency
Ei : expected frequency
First we find sample mean = (6.40+.....+6.50)/25 = 5.61
For Uniform distribution ,each observation has a equal probability and therefore equal expected frequency
Calculation
Oi | Ei | (Oi-Ei)^2/Ei | |
4.01 | 5.6104 | 0.45652363 | |
4.2 | 5.6104 | 0.35456084 | |
4.39 | 5.6104 | 0.26546702 | |
4.5 | 5.6104 | 0.21976832 | |
4.65 | 5.6104 | 0.16440328 | |
4.73 | 5.6104 | 0.13815488 | |
4.99 | 5.6104 | 0.06860405 | |
5.24 | 5.6104 | 0.0244539 | |
5.25 | 5.6104 | 0.02315132 | |
5.42 | 5.6104 | 0.0064616 | |
5.51 | 5.6104 | 0.00179669 | |
5.54 | 5.6104 | 0.00088339 | |
5.69 | 5.6104 | 0.00112936 | |
5.82 | 5.6104 | 0.00783049 | |
5.85 | 5.6104 | 0.01023245 | |
5.9 | 5.6104 | 0.0149487 | |
5.94 | 5.6104 | 0.01936335 | |
6.4 | 5.6104 | 0.11112722 | |
6.46 | 5.6104 | 0.12865752 | |
6.5 | 5.6104 | 0.14105735 | |
6.52 | 5.6104 | 0.14747115 | |
6.53 | 5.6104 | 0.15073153 | |
6.58 | 5.6104 | 0.16756812 | |
6.78 | 5.6104 | 0.24382649 | |
6.86 | 5.6104 | 0.27832243 | |
total | 3.14649508 |
Therefore ,
degrees of freedom = 25-1=24
P value = 1.000
Since P value > 0.05
The result is not significant
We fail to reject H0
There is not sufficient evidence to conclude that the sample data do not follow uniform distribution .
Get Answers For Free
Most questions answered within 1 hours.