Question

A population has a mean of 200 and a standard deviation of 50. Suppose a simple...

A population has a mean of 200 and a standard deviation of 50. Suppose a simple random sample of size ̅ 100 is selected and ? is used to estimate ?. 1. What is the probability that the sample mean will be within ±5 of the population mean? 2. What is the probability that the sample mean will be within ±10 of the population mean?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A population has a mean of 300 and a standard deviation of 80. Suppose a simple...
A population has a mean of 300 and a standard deviation of 80. Suppose a simple random sample of size 100 is selected and is used to estimate ? . 1. What is the probability that the sample mean will be within +/- 7 of the population mean (to 4 decimals)? 2. What is the probability that the sample mean will be within +/- 13 of the population mean (to 4 decimals)?
A population has a mean of 200 and a standard deviation of 50. Suppose a sample...
A population has a mean of 200 and a standard deviation of 50. Suppose a sample of size 100 is selected and is used to estimate . Use z-table. What is the probability that the sample mean will be within +/- 4 of the population mean (to 4 decimals)? (Round z value in intermediate calculations to 2 decimal places.) What is the probability that the sample mean will be within +/- 11 of the population mean (to 4 decimals)? (Round...
1. A population has a mean of 200 and a standard deviation of 50. A simple...
1. A population has a mean of 200 and a standard deviation of 50. A simple random sample of size 100 will be taken and the sample mean will be used to estimate the population mean. a. What is the expected value of the sample mean? b. What is the standard deviation of the sample mean? c. Confirm whether the Central Limit Theorem is met and explain it’s significance. d. Draw the sampling distribution of the sample mean. e. What...
A population has a mean of 200 and a standard deviation of 80. Suppose a sample...
A population has a mean of 200 and a standard deviation of 80. Suppose a sample of size 100 is selected and is used to estimate . Use z-table. What is the probability that the sample mean will be within +/- 4 of the population mean (to 4 decimals)? (Round z value in intermediate calculations to 2 decimal places.) What is the probability that the sample mean will be within +/- 13 of the population mean (to 4 decimals)? (Round...
A population has a mean of 200 and a standard deviation of 60. Suppose a sample...
A population has a mean of 200 and a standard deviation of 60. Suppose a sample of size 100 is selected and  is used to estimate . Use z-table. What is the probability that the sample mean will be within +/- 6 of the population mean (to 4 decimals)? (Round z value in intermediate calculations to 2 decimal places.) What is the probability that the sample mean will be within +/- 17 of the population mean (to 4 decimals)? (Round z...
A population has a mean of 200 and a standard deviation of 90. Suppose a sample...
A population has a mean of 200 and a standard deviation of 90. Suppose a sample of size 125 is selected and is used to estimate . Use z-table. a. What is the probability that the sample mean will be within +/- 9 of the population mean (to 4 decimals)? (Round z value in intermediate calculations to 2 decimal places.) b. What is the probability that the sample mean will be within +/- 11 of the population mean (to 4...
A population has a mean of 400 and a standard deviation of 90. Suppose a sample...
A population has a mean of 400 and a standard deviation of 90. Suppose a sample of 100 size is selected and x bar is used to estimate mu. Use z-table. a. What is the probability that the sample mean will be within +- 4 of the population mean (to 4 decimals)? b. What is the probability that the sample mean will be within +- 16 of the population mean (to 4 decimals)?
A population has a mean of 300 and a standard deviation of 70. Suppose a sample...
A population has a mean of 300 and a standard deviation of 70. Suppose a sample of size 100 is selected and  is used to estimate . Use z-table. A. What is the probability that the sample mean will be within +/- 8 of the population mean (to 4 decimals)? (Round z value in intermediate calculations to 2 decimal places.) B. What is the probability that the sample mean will be within +/- 10 of the population mean (to 4 decimals)?...
A population has a mean of 300 and a standard deviation of 80. Suppose a sample...
A population has a mean of 300 and a standard deviation of 80. Suppose a sample of size 100 is selected and x (with a bar over the x) is used to estimate mu. Use z-table. a. What is the probability that the sample mean will be within +/- 7 of the population mean (to 4 decimals)? b. What is the probability that the sample mean will be within +/- 13 of the population mean (to 4 decimals)?
A population has a mean of 400 and a standard deviation of 60. Suppose a sample...
A population has a mean of 400 and a standard deviation of 60. Suppose a sample of size 100 is selected and  is used to estimate . Use z-table. What is the probability that the sample mean will be within +/- 4 of the population mean (to 4 decimals)? (Round z value in intermediate calculations to 2 decimal places.) What is the probability that the sample mean will be within +/- 16 of the population mean (to 4 decimals)? (Round z...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT