Calculate the sample variance and sample standard deviation for the following frequency distribution of heart rates for a sample of American adults. If necessary, round to one more decimal place than the largest number of decimal places given in the data.
Class | Frequency |
---|---|
61 - 66 | 13 |
67 - 72 | 9 |
73 - 78 | 5 |
79 - 84 | 3 |
885 - 90 | 6 |
Solution:
Class (1) |
Frequency (f) (2) |
Mid value (x) (3) |
f⋅x (4)=(2)×(3) |
f⋅x2=(f⋅x)×(x) (5)=(4)×(3) |
61-66 | 13 | 63.5 | 825.5 | 52419.25 |
67-72 | 9 | 69.5 | 625.5 | 43472.25 |
73-78 | 5 | 75.5 | 377.5 | 28501.25 |
79-84 | 3 | 81.5 | 244.5 | 19926.75 |
85-90 | 6 | 87.5 | 525 | 45937.5 |
n=36 | ∑f⋅x=2598 | ∑f⋅x2=190257 |
Sample Variance S2=∑f⋅x2-(∑f⋅x)2nn-1
=190257-(2598)236/35
=190257-187489/35
=276835
=79.0857
Sample Standard deviation S=√∑f⋅x2-(∑f⋅x)2nn-1
=√190257-(2598)23635
=√190257-187489/35
=√2768/35
=√79.0857
=8.893
Get Answers For Free
Most questions answered within 1 hours.