Question

Discuss the strength and the significance of your regression model by using R-square and significance F...

Discuss the strength and the significance of your regression model by using R-square and significance F where α = 0.05.

SUMMARY OUTPUT
Regression Statistics
Multiple R 0.919011822
R Square 0.844582728
Adjusted R Square 0.834446819
Standard Error 163.953479
Observations 50
ANOVA
df SS MS F Significance F
Regression 3 6719578.309 2239859.44 83.3257999 1.28754E-18
Residual 46 1236514.191 26880.7433
Total 49 7956092.5
Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 21.7335244 114.2095971 0.19029508 0.84991523 -208.158471 251.62552 -208.15847 251.62552
sqft 0.546807448 0.076647924 7.13401509 5.738E-09 0.392523179 0.70109172 0.39252318 0.70109172
age -3.075663237 2.263665569 -1.3587092 0.18086435 -7.632185699 1.48085922 -7.6321857 1.48085922
features 40.54881241 15.65468404 2.59020318 0.0128049 9.0375678 72.060057 9.0375678 72.060057

Homework Answers

Answer #1

Multiple Regression

From the given output we can see that R Square is 0.844582728 which means approximately 84% of the total variation in the dependent variable can be explained by the set of independent variables. So the model is good enough strong for prediction.

We see that the significance F is 1.28754E-18 which is smaller than alpha 0.05. It indicates that at 95% level of significance the regression coefficients are significant. Thus we can say that the model is fine and we can continue with this set of independent variables.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
interpret each coefficient estimate and discuss its significance using α = 0.01, α = 0.05 and...
interpret each coefficient estimate and discuss its significance using α = 0.01, α = 0.05 and α = 0.10. Use the concepts of strict and weak significance too SUMMARY OUTPUT Regression Statistics Multiple R 0.820140129 R Square 0.672629832 Adjusted R Square 0.658699186 Standard Error 235.4076294 Observations 50 ANOVA df SS MS F Significance F Regression 2 5351505.158 2675752.58 48.2841827 4.0125E-12 Residual 47 2604587.342 55416.752 Total 49 7956092.5 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper...
Discuss the model and interpret the results: report overall model fit (t and significance), report the...
Discuss the model and interpret the results: report overall model fit (t and significance), report the slope coefficient and significance, report and interpret r squared. Regression Statistics Multiple R 0.001989374 R Square 3.95761E-06 Adjusted R Square -0.005046527 Standard Error 8605.170404 Observations 200 ANOVA df SS MS F Significance F Regression 1 58025.4985 58025.4985 0.00078361 0.977695901 Residual 198 14661693620 74048957.68 Total 199 14661751645 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 15668.85874 2390.079111 6.555790838...
SUMMARY OUTPUT Regression Statistics Multiple R 0.84508179 R Square 0.714163232 Adjusted R Square 0.704942691 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.84508179 R Square 0.714163232 Adjusted R Square 0.704942691 Standard Error 9.187149383 Observations 33 ANOVA df SS MS F Significance F Regression 1 6537.363661 6537.363661 77.4535073 6.17395E-10 Residual 31 2616.515127 84.40371378 Total 32 9153.878788 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 61.07492285 3.406335763 17.92980114 6.41286E-18 54.12765526 68.02219044 54.12765526 68.02219044 Time (Y) -0.038369095 0.004359744 -8.800767426 6.17395E-10 -0.047260852 -0.029477338 -0.047260852 -0.029477338 Using your highlighted cells, what is the equation...
Regression Statistics Multiple R 0.710723 R Square 0.505127 Adjusted R Square 0.450141 Standard Error 1.216847 Observations...
Regression Statistics Multiple R 0.710723 R Square 0.505127 Adjusted R Square 0.450141 Standard Error 1.216847 Observations 21 ANOVA df SS MS F Significance F Regression 2 27.20518 13.60259 9.186487 0.00178 Residual 18 26.65291 1.480717 Total 20 53.8581 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 58.74307 12.66908 4.636728 0.000205 32.12632 85.35982 32.12632 85.35982 High School Grad -0.00133 0.000311 -4.28236 0.000448 -0.00198 -0.00068 -0.00198 -0.00068 Bachelor's -0.00016 5.46E-05 -3.00144 0.007661 -0.00028 -4.9E-05 -0.00028 -4.9E-05...
Regression Statistics Multiple R 0.3641 R Square 0.1325 Adjusted R Square 0.1176 Standard Error 0.0834 Observations...
Regression Statistics Multiple R 0.3641 R Square 0.1325 Adjusted R Square 0.1176 Standard Error 0.0834 Observations 60 ANOVA df SS MS F Significance F Regression 1 0.0617 0.0617 8.8622 0.0042 Residual 58 0.4038 0.0070 Total 59 0.4655 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept -0.0144 0.0110 -1.3062 0.1966 -0.0364 0.0077 X Variable 1 0.8554 0.2874 2.9769 0.0042 0.2802 1.4307 How do you interpret the above table?
Compare the two regression models. Does it make sense that spending and household debt could each...
Compare the two regression models. Does it make sense that spending and household debt could each be predicted by annual household income? Why or why not? 1. Predicting spending by household income Regression Statistics Multiple R 0.859343186 R Square 0.738470711 Adjusted R Square 0.737149856 Standard Error 1602.157625 Observations 200 ANOVA df SS MS F Significance F Regression 1 1435121315 1435121315 559.085376 1.42115E-59 Residual 198 508247993.2 2566909.056 Total 199 1943369308 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower...
SUMMARY OUTPUT Regression Statistics Multiple R 0.993709623 R Square 0.987458816 Adjusted R Square 0.987378251 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.993709623 R Square 0.987458816 Adjusted R Square 0.987378251 Standard Error 514.2440271 Observations 471 ANOVA df SS MS F Significance F Regression 3 9723795745 3241265248 12256.7707 0 Residual 467 123496711.4 264446.9194 Total 470 9847292456 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept -267.1127974 42.01832073 -6.357055513 4.8988E-10 -349.68118 -184.54441 -349.68118 -184.54441 Fuel cost (000,000) 0.449917223 0.098292092 4.577349137 6.0451E-06 0.25676768 0.64306676 0.25676768 0.64306676 Salary (000,000) -0.327915884 0.188252958 -1.741889678 0.08218614 -0.6978436...
Use Excel to develop a regression model for the Hospital Database (using the “Excel Databases.xls” file...
Use Excel to develop a regression model for the Hospital Database (using the “Excel Databases.xls” file on Blackboard) to predict the number of Personnel by the number of Births. Perform a test of the slope. What is the value of the test statistic? Write your answer as a number, round your answer to 2 decimal places. SUMMARY OUTPUT Regression Statistics Multiple R 0.697463374 R Square 0.486455158 Adjusted R Square 0.483861497 Standard Error 590.2581194 Observations 200 ANOVA df SS MS F...
Using the attached regression output, answer the following: SUMMARY OUTPUT Regression Statistics Multiple R 0.972971 R...
Using the attached regression output, answer the following: SUMMARY OUTPUT Regression Statistics Multiple R 0.972971 R Square 0.946673 Adjusted R Square 0.944355 Standard Error 76.07265 Observations 49 ANOVA df SS MS F Significance F Regression 2 4725757 2362878 408.3046 5.24E-30 Residual 46 266204.2 5787.049 Total 48 4991961 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept -0.46627 14.97924 -0.03113 0.975302 -30.6179 29.68537 X1 0.09548 0.084947 1.123997 0.266846 -0.07551 0.26647 X2 0.896042 0.205319 4.364141 7.16E-05 0.482756 1.309328 a. What...
Solve the missing values in the following regression model. Write down all solutions along with their...
Solve the missing values in the following regression model. Write down all solutions along with their key letter. Regression Statistics Multiple R 0.489538 R Square 0.239648 Adjusted R Square 0.231889 Standard Error 11.76656 Observations 100 ANOVA df SS MS F Significance F Regression 1 4276.457 30.88765 2.35673E-07 Residual 138.452 Total Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 99.0% Upper 99.0% Intercept -24.1551 12.83013 -1.88268 0.062709 -49.61605579 1.305895 -57.8589 9.548787 Food 3.167042 0.569851 2.36E-07 2.03619109 4.297893 1.670083...