Question

The joint PDF of X and Y is given by fX,Y(x, y) = c exp {-2/3(x^2...

The joint PDF of X and Y is given by

fX,Y(x, y) = c exp {-2/3(x^2 + xy + y^2 )}

(a) Find c and the correlation coe?cient of X and Y .

(b) Find the best least square estimator of Y based on X.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The joint PDF of X and Y is given by fX,Y(x, y) = nx^ne^(?xy) , 0...
The joint PDF of X and Y is given by fX,Y(x, y) = nx^ne^(?xy) , 0 < x < 1, y > 0, where n is an integer and n > 2. (a) Find the marginal PDF of X and its mean. (b) Find the conditional PDF of Y given X = x. (c) Deduce the conditional mean and the conditional variance of Y given X = x. (d) Find the mean and variance of Y . (e) Find the...
The random variable X is distributed with pdf fX(x, θ) = (2/θ^2)*x*exp(-(x/θ)2), where x>0 and θ>0....
The random variable X is distributed with pdf fX(x, θ) = (2/θ^2)*x*exp(-(x/θ)2), where x>0 and θ>0. Please note the term within the exponential is -(x/θ)^2 and the first term includes a θ^2. a) Find the distribution of Y = (X1 + ... + Xn)/n where X1, ..., Xn is an i.i.d. sample from fX(x, θ). If you can’t find Y, can you find an approximation of Y when n is large? b) Find the best estimator, i.e. MVUE, of θ?
Let X and Y be random variables with the joint pdf fX,Y(x,y) = 6x, 0 ≤...
Let X and Y be random variables with the joint pdf fX,Y(x,y) = 6x, 0 ≤ y ≤ 1−x, 0 ≤ x ≤1. 1. Are X and Y independent? Explain with a picture. 2. Find the marginal pdf fX(x). 3. Find P( Y < 1/8 | X = 1/2 )
Consider the joint pdf f(x, y) = 3(x^2+ y)/11 for 0 ≤ x ≤ 2, 0...
Consider the joint pdf f(x, y) = 3(x^2+ y)/11 for 0 ≤ x ≤ 2, 0 ≤ y ≤ 1. (a) Calculate E(X), E(Y ), E(X^2), E(Y^2), E(XY ), Var(X), Var(Y ), Cov(X, Y ). (b) Find the best linear predictor of Y given X. (c) Plot the CEF and BLP as a function of X.
Random Variables X and Y have joint PDF fX,Y(x,y) =    c*(x+y)   ,    0<x , x>y                     0&
Random Variables X and Y have joint PDF fX,Y(x,y) =    c*(x+y)   ,    0<x , x>y                     0             ,     otherwise a. Find the value of the constant c. b. Find P[x < 1 and  y < 2]
The random variables X and Y have the joint PDF FX,Y(x,y) = { 6*e^-(3x + 2y)...
The random variables X and Y have the joint PDF FX,Y(x,y) = { 6*e^-(3x + 2y) 0 <= x, y { 0 otherwise (a) Show whether X and Y are independent or not. (b) Find the PDF of fX,Y |B(x,y) where B represents the event X + Y < 3 (c) Find fY | B(x) where B represents the event X + Y < 3
RVs Х and Y are continuous, joint PDF fx,y(x,y) = cxy, if 0 ≤ x ≤...
RVs Х and Y are continuous, joint PDF fx,y(x,y) = cxy, if 0 ≤ x ≤ y ≤ 1 , and fx,y(x,y) = 0, otherwise, c is a constant. Find a) fx|y(x|y = 0.5) for x ∈ [0, 0.5], b) E(X | y = 0.5).
2. Random variables X and Y have a joint PDF fX,Y (x, y) = 2 for...
2. Random variables X and Y have a joint PDF fX,Y (x, y) = 2 for 0 ≤ y ≤ x ≤ 1. Determine (a) E[X] and Var[X]. (b) E[Y ] and Var[Y ]. (c) Cov(X, Y ). (d) E[X + Y ]. (e) Var[X + Y ].
1. Let (X,Y ) be a pair of random variables with joint pdf given by f(x,y)...
1. Let (X,Y ) be a pair of random variables with joint pdf given by f(x,y) = 1(0 < x < 1,0 < y < 1). (a) Find P(X + Y ≤ 1). (b) Find P(|X −Y|≤ 1/2). (c) Find the joint cdf F(x,y) of (X,Y ) for all (x,y) ∈R×R. (d) Find the marginal pdf fX of X. (e) Find the marginal pdf fY of Y . (f) Find the conditional pdf f(x|y) of X|Y = y for 0...
Suppose the continuous random variables X and Y have joint pdf: fXY (x, y) = (1/2)xy...
Suppose the continuous random variables X and Y have joint pdf: fXY (x, y) = (1/2)xy for 0 < x < 2 and x < y < 2 (a) Find P(Y < 2X) by integrating in the x direction first. Be careful setting up your limits of integration. (b) Find P(Y < 2X) by integrating in the y direction first. Be extra careful setting up your limits of integration. (c) Find the conditional pdf of X given Y = y,...