Question

Consider the e-billing case. The mean and the standard deviation of the sample of n =...

Consider the e-billing case. The mean and the standard deviation of the sample of n = 65 payment times are x⎯⎯x¯ = 18.2779 and s = 3.9045. Test H0: μ = 19.0 versus Ha: μ < 19.0 by setting α equal to .01 and using a critical value rule and assume normality of the population. (Round your "t" and "t0.01" answers to 3 decimal places and p-value answer to 4 decimal places. Negative value should be indicated by a minus sign. Use a statistical software package - e.g., Minitab, MegaStat, etc., to derive the p-value.)

t
t0.01
p-value


(Click to select)RejectDo not reject H0 at 0.01.

Homework Answers

Answer #1

t test statistic formula is              


=-1.491

Sample size =65

Degree of freedom =n-1= 65-1= 64

t critical value =-2.386....................by using t table.

P value = 0.0704.......................by using Excel command =TDIST(ABS(-1.491),64,1)

P value > 0.01

Therefore, we fail to reject H0 at

t -1.491
t0.01 -2.386
P value 0.0704

Do not reject H0 at 0.01

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use the Excel output in the below table to do (1) through (6) for each ofβ0,...
Use the Excel output in the below table to do (1) through (6) for each ofβ0, β1, β2, and β3. y = β0 + β1x1 + β2x2 + β3x3 + ε     df = n – (k + 1) = 16 – (3 + 1) = 12 Excel output for the hospital labor needs case (sample size: n = 16) Coefficients Standard Error t Stat p-value Lower 95% Upper 95% Intercept 1946.8020 504.1819 3.8613 0.0023 848.2840 3045.3201 XRay (x1) 0.0386...
Use the Excel output in the below table to do (1) through (6) for each ofβ0,...
Use the Excel output in the below table to do (1) through (6) for each ofβ0, β1, β2, and β3. y = β0 + β1x1 + β2x2 + β3x3 + ε     df = n – (k + 1) = 16 – (3 + 1) = 12 Excel output for the hospital labor needs case (sample size: n = 16) Coefficients Standard Error t Stat p-value Lower 95% Upper 95% Intercept 1946.8020 504.1819 3.8613 0.0023 848.2840 3045.3201 XRay (x1) 0.0386...
A random sample of 100 observations from a quantitative population produced a sample mean of 21.5...
A random sample of 100 observations from a quantitative population produced a sample mean of 21.5 and a sample standard deviation of 8.2. Use the p-value approach to determine whether the population mean is different from 23. Explain your conclusions. (Use α = 0.05.) State the null and alternative hypotheses. H0: μ = 23 versus Ha: μ < 23 H0: μ = 23 versus Ha: μ > 23 H0: μ = 23 versus Ha: μ ≠ 23 H0: μ <...
There is evidence that cytotoxic T lymphocytes (T cells) participate in controlling tumor growth and that...
There is evidence that cytotoxic T lymphocytes (T cells) participate in controlling tumor growth and that they can be harnessed to use the body's immune system to treat cancer. One study investigated the use of a T cell‑engaging antibody, blinatumomab, to recruit T cells to control tumor growth. Given are the T cell counts (1000 per microliter) at baseline (beginning of the study) and after 20 days on blinatumomab for six subjects in the study. The difference, after 20 days...
A random sample of n = 1,400 observations from a binomial population produced x = 252....
A random sample of n = 1,400 observations from a binomial population produced x = 252. (a) If your research hypothesis is that p differs from 0.2, what hypotheses should you test? H0: p = 0.2 versus Ha: p > 0.2 H0: p = 0.2 versus Ha: p ≠ 0.2    H0: p = 0.2 versus Ha: p < 0.2 H0: p < 0.2 versus Ha: p > 0.2 H0: p ≠ 0.2 versus Ha: p = 0.2 (b) Calculate the...
A random sample of n = 1,300 observations from a binomial population produced x = 618....
A random sample of n = 1,300 observations from a binomial population produced x = 618. (a) If your research hypothesis is that p differs from 0.5, what hypotheses should you test? H0: p ≠ 0.5 versus Ha: p = 0.5 H0: p < 0.5 versus Ha: p > 0.5     H0: p = 0.5 versus Ha: p > 0.5 H0: p = 0.5 versus Ha: p < 0.5 H0: p = 0.5 versus Ha: p ≠ 0.5 (b) Calculate the...
The following table is the output of simple linear regression analysis. Note that in the lower...
The following table is the output of simple linear regression analysis. Note that in the lower right hand corner of the output we give (in parentheses) the number of observations, n, used to perform the regression analysis and the t statistic for testing H0: β1 = 0 versus Ha: β1 ≠ 0.   ANOVA df SS MS F Significance F   Regression 1     61,091.6455 61,091.6455 .69        .4259   Residual 10     886,599.2711 88,659.9271      Total 11     947,690.9167 (n = 12;...
A sample of 36 observations is selected from one population with a population standard deviation of...
A sample of 36 observations is selected from one population with a population standard deviation of 3.8. The sample mean is 100.5. A sample of 50 observations is selected from a second population with a population standard deviation of 4.4. The sample mean is 99.3. Conduct the following test of hypothesis using the 0.02 significance level.    H0 : μ1 = μ2 H1 : μ1 ≠ μ2 (a) This is a (Click to select)twoone-tailed test. (b) State the decision rule....
Consider the following hypotheses: H0: μ = 9,100 HA: μ ≠ 9,100 The population is normally...
Consider the following hypotheses: H0: μ = 9,100 HA: μ ≠ 9,100 The population is normally distributed with a population standard deviation of 700. Compute the value of the test statistic and the resulting p-value for each of the following sample results. For each sample, determine if you can "reject/do not reject" the null hypothesis at the 10% significance level. (You may find it useful to reference the appropriate table: z table or t table) (Negative values should be indicated...
Consider the following hypotheses: H0: μ = 1,800 HA: μ ≠ 1,800 The population is normally...
Consider the following hypotheses: H0: μ = 1,800 HA: μ ≠ 1,800 The population is normally distributed with a population standard deviation of 440. Compute the value of the test statistic and the resulting p-value for each of the following sample results. For each sample, determine if you can "reject/do not reject" the null hypothesis at the 10% significance level. (You may find it useful to reference the appropriate table: z table or t table) (Negative values should be indicated...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT