Question

Seventy-seven successes were observed in a random sample of n = 120 observations from a binomial...

Seventy-seven successes were observed in a random sample of

n = 120

observations from a binomial population. You wish to show that

p > 0.5.

Calculate the appropriate test statistic. (Round your answer to two decimal places.)

z =

Calculate the p-value. (Round your answer to four decimal places.)

p-value =

Do the conclusions based on a fixed rejection region of

z > 1.645

agree with those found using the p-value approach at

α = 0.05?

Yes, both approaches produce the same conclusion.No, the p-value approach rejects the null hypothesis when the fixed rejection region approach fails to reject the null hypothesis.     No, the fixed rejection region approach rejects the null hypothesis when the p-value approach fails to reject the null hypothesis.

Should they?

Yes? No?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A random sample of n = 1,000 observations from a binomial population contained 337 successes. You...
A random sample of n = 1,000 observations from a binomial population contained 337 successes. You wish to show that p < 0.35. Calculate the appropriate test statistic. (Round your answer to two decimal places.) z =   Provide an α = 0.05 rejection region. (Round your answer to two decimal places. If the test is one-tailed, enter NONE for the unused region.) z > z <
Independent random samples of n1 = 100 and n2 = 100 observations were randomly selected from...
Independent random samples of n1 = 100 and n2 = 100 observations were randomly selected from binomial populations 1 and 2, respectively. Sample 1 had 51 successes, and sample 2 had 56 successes. b) Calculate the standard error of the difference in the two sample proportions, (p̂1 − p̂2). Make sure to use the pooled estimate for the common value of p. (Round your answer to four decimal places.) d)p-value approach: Find the p-value for the test. (Round your answer...
A random sample of n = 1,400 observations from a binomial population produced x = 541...
A random sample of n = 1,400 observations from a binomial population produced x = 541 successes. You wish to show that p differs from 0.4. Calculate the appropriate test statistic. (Round your answer to two decimal places.) z = ?? Calculate the p-value. (Round your answer to four decimal places.) p-value = ??
Independent random samples of 140 observations were randomly selected from binomial populations 1 and 2, respectively....
Independent random samples of 140 observations were randomly selected from binomial populations 1 and 2, respectively. Sample 1 had 82 successes, and sample 2 had 87 successes. Suppose that, for practical reasons, you know that p1 cannot be larger than p2. Test the appropriate hypothesis using α = 0.10. Find the test statistic. (Round your answer to two decimal places.) z = Find the rejection region. (Round your answers to two decimal places. If the test is one-tailed, enter NONE...
Independent random samples, each containing 500 observations, were selected from two binomial populations. The samples from...
Independent random samples, each containing 500 observations, were selected from two binomial populations. The samples from populations 1 and 2 produced 388 and 188 successes, respectively. (a) Test H0:(p1−p2)=0 against Ha:(p1−p2)≠0. Use α=0.04 test statistic = rejection region |z|> The final conclusion is A. There is not sufficient evidence to reject the null hypothesis that (p1−p2)=0.   B. We can reject the null hypothesis that (p1−p2)=0 and support that (p1−p2)≠0. (b) Test H0:(p1−p2)≤0 against Ha:(p1−p2)>0. Use α=0.03 test statistic = rejection...
A random sample of 30 binomial trials resulted in 12 successes. Test the claim that the...
A random sample of 30 binomial trials resulted in 12 successes. Test the claim that the population proportion of successes does not equal 0.50. Use a level of significance of 0.05. (a) Can a normal distribution be used for the  distribution? Explain. Yes, n·p and n·q are both greater than 5 .No, n·p and n·q are both less than 5.     Yes, n·p and n·q are both less than 5 .No, n·p is greater than 5, but n·q is less than 5....
A random sample of 20 binomial trials resulted in 8 successes. Test the claim that the...
A random sample of 20 binomial trials resulted in 8 successes. Test the claim that the population proportion of successes does not equal 0.50. Use a level of significance of 0.05. (a) Can a normal distribution be used for the p̂ distribution? Explain. Yes, np and nq are both greater than 5.No, np and nq are both less than 5.    No, np is greater than 5, but nq is less than 5.Yes, np and nq are both less than 5.No, nq...
A random sample of 40 binomial trials resulted in 16 successes. Test the claim that the...
A random sample of 40 binomial trials resulted in 16 successes. Test the claim that the population proportion of successes does not equal 0.50. Use a level of significance of 0.05. (a) Can a normal distribution be used for the p̂ distribution? Explain. No, nq is greater than 5, but np is less than 5.Yes, np and nq are both greater than 5.    No, np is greater than 5, but nq is less than 5.No, np and nq are both less...
A random sample of 20 binomial trials resulted in 8 successes. Test the claim that the...
A random sample of 20 binomial trials resulted in 8 successes. Test the claim that the population proportion of successes does not equal 0.50. Use a level of significance of 0.05. (a) Can a normal distribution be used for the p hat distribution? Explain. No, n·p and n·q are both less than 5. No, n·p is greater than 5, but n·q is less than 5. No, n·q is greater than 5, but n·p is less than 5. Yes, n·p and...
A sample of 34 observations is selected from a normal population. The sample mean is 28,...
A sample of 34 observations is selected from a normal population. The sample mean is 28, and the population standard deviation is 4. Conduct the following test of hypothesis using the 0.05 significance level. H0: μ ≤ 26 H1: μ > 26 Is this a one- or two-tailed test? One-tailed test Two-tailed test What is the decision rule? Reject H0 when z > 1.645 Reject H0 when z ≤ 1.645 What is the value of the test statistic? (Round your...