Question

Suppose the heights of 18-year-old men are approximately normally distributed, with mean 69 inches and standard...

Suppose the heights of 18-year-old men are approximately normally distributed, with mean 69 inches and standard deviation 6 inches.


(b) If a random sample of twenty-seven 18-year-old men is selected, what is the probability that the mean height x is between 68 and 70 inches? (Round your answer to four decimal places.)

Homework Answers

Answer #1

Solution :

Given that,

mean = = 69

standard deviation = = 6

n = 27

=   = 69

= / n = 6 / 27 = 1.15

P(68 < < 70)  

= P[(68 - 69) / 1.15 < ( - ) / < (70 - 69) / 1.15)]

= P(-0.87 < Z < 0.87)

= P(Z < 0.87) - P(Z < -0.87)

Using z table,  

= 0.8078 - 0.1922

= 0.6156

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose the heights of 18-year-old men are approximately normally distributed, with mean 71 inches and standard...
Suppose the heights of 18-year-old men are approximately normally distributed, with mean 71 inches and standard deviation 4 inches. If a random sample of twenty-eight 18-year-old men is selected, what is the probability that the mean height x is between 70 and 72 inches?
Suppose the heights of 18-year-old men are approximately normally distributed, with mean 69 inches and standard...
Suppose the heights of 18-year-old men are approximately normally distributed, with mean 69 inches and standard deviation 5 inches. (a) What is the probability that an 18-year-old man selected at random is between 68 and 70 inches tall? (Round your answer to four decimal places.) (b) If a random sample of thirty 18-year-old men is selected, what is the probability that the mean height x is between 68 and 70 inches? (Round your answer to four decimal places.) (c) Compare...
Suppose the heights of 18-year-old men are approximately normally distributed, with mean 69 inches and standard...
Suppose the heights of 18-year-old men are approximately normally distributed, with mean 69 inches and standard deviation 2 inches. (a) What is the probability that an 18-year-old man selected at random is between 68 and 70 inches tall? (Round your answer to four decimal places.) (b) If a random sample of ten 18-year-old men is selected, what is the probability that the mean height x is between 68 and 70 inches? (Round your answer to four decimal places.) (c) Compare...
Suppose the heights of 18-year-old men are approximately normally distributed, with mean 69 inches and standard...
Suppose the heights of 18-year-old men are approximately normally distributed, with mean 69 inches and standard deviation 1 inches. (a) What is the probability that an 18-year-old man selected at random is between 68 and 70 inches tall? (Round your answer to four decimal places.) (b) If a random sample of nineteen 18-year-old men is selected, what is the probability that the mean height x is between 68 and 70 inches? (Round your answer to four decimal places.) (c) Compare...
Suppose the heights of 18-year-old men are approximately normally distributed, with mean 66 inches and standard...
Suppose the heights of 18-year-old men are approximately normally distributed, with mean 66 inches and standard deviation 2 inches. (a) What is the probability that an 18-year-old man selected at random is between 65 and 67 inches tall? (Round your answer to four decimal places.) (b) If a random sample of fourteen 18-year-old men is selected, what is the probability that the mean height x is between 65 and 67 inches? (Round your answer to four decimal places.)
Suppose the heights of 18-year-old men are approximately normally distributed, with mean 65 inches and standard...
Suppose the heights of 18-year-old men are approximately normally distributed, with mean 65 inches and standard deviation 4 inches. (a) What is the probability that an 18-year-old man selected at random is between 64 and 66 inches tall? (Round your answer to four decimal places.) (b) If a random sample of eleven 18-year-old men is selected, what is the probability that the mean height x is between 64 and 66 inches? (Round your answer to four decimal places.)
Suppose the heights of 18-year-old men are approximately normally distributed, with mean 70 inches and standard...
Suppose the heights of 18-year-old men are approximately normally distributed, with mean 70 inches and standard deviation 6 inches. (a) What is the probability that an 18-year-old man selected at random is between 69 and 71 inches tall? (Round your answer to four decimal places.) (b) If a random sample of twenty 18-year-old men is selected, what is the probability that the mean height x is between 69 and 71 inches? (Round your answer to four decimal places.) (c) Compare...
Suppose the heights of 18-year-old men are approximately normally distributed, with mean 67 inches and standard...
Suppose the heights of 18-year-old men are approximately normally distributed, with mean 67 inches and standard deviation 3 inches. (a) What is the probability that an 18-year-old man selected at random is between 66 and 68 inches tall? (Round your answer to four decimal places.) (b) If a random sample of twenty-five 18-year-old men is selected, what is the probability that the mean height x is between 66 and 68 inches? (Round your answer to four decimal places.) (c) Compare...
Suppose the heights of 18-year-old men are approximately normally distributed, with mean 67 inches and standard...
Suppose the heights of 18-year-old men are approximately normally distributed, with mean 67 inches and standard deviation 1 inches. (a) What is the probability that an 18-year-old man selected at random is between 66 and 68 inches tall? (Round your answer to four decimal places.) (b) If a random sample of twenty-six 18-year-old men is selected, what is the probability that the mean height x is between 66 and 68 inches? (Round your answer to four decimal places.) (c) Compare...
Suppose the heights of 18-year-old men are approximately normally distributed, with mean 71 inches and standard...
Suppose the heights of 18-year-old men are approximately normally distributed, with mean 71 inches and standard deviation 2 inches. 1. What is the probability that an 18-year-old man selected at random is between 70 and 72 inches tall? (Round your answer to four decimal places.) ________________ 2. If a random sample of twenty-eight 18-year-old men is selected, what is the probability that the mean height x is between 70 and 72 inches? (Round your answer to four decimal places.) _________________...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT