P( actually vote)=0.45= p
Let X be the number of american people who actually vote
a) n=2
X~ BInomial ( n=2, p=0.45)
p( X<=1)= P( X=0) + P( X=1)
= 2C0 (0.45)0(1-0.45)2 + 2C1 (0.45) (1-0.45)
= 0.7975
Here we use Binomial distribution
b)
n=20
X~ BInomial ( n=20, p=0.45)
p( X>=10)= 0.4086 ( using binomial table)
Here we use Binomial distribution
c) n=200
Since the sample size is quite large we will use Normal aproximation
Mean, np= 200*0.45 =90
Variance , np(1-p) = 200*0.45*(1-0.45)= 49.5
X~ Normal( 90, 49.5)
P( X>=100)= P( X> 109.5) ( continuity correction)
= P( )
= P( Z >2.77)
= 1- P( Z < 2.77)
= 1- 0.9972
= 0.0028
Normal approximation of binomial distribution is used
Get Answers For Free
Most questions answered within 1 hours.