Question

Three different methods for assembling a product were proposed by an industrial engineer. To investigate the...

Three different methods for assembling a product were proposed by an industrial engineer. To investigate the number of units assembled correctly with each method, 30 employees were randomly selected and randomly assigned to the three proposed methods in such a way that each method was used by 10 workers. The number of units assembled correctly was recorded, and the analysis of variance procedure was applied to the resulting data set. The following results were obtained: SST = 10,810; SSTR = 4,550.

  1. Set up the ANOVA table for this problem (to 2 decimals, if necessary). Round p-value to four decimal places.
    Source of Variation Sum of Squares Degrees of Freedom Mean Square F p-value
    Treatments
    Error
    Total

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Three different methods for assembling a product were proposed by an industrial engineer. To investigate the...
Three different methods for assembling a product were proposed by an industrial engineer. To investigate the number of units assembled correctly with each method, 30 employees were randomly selected and randomly assigned to the three proposed methods in such a way that each method was used by 10 workers. The number of units assembled correctly was recorded, and the analysis of variance procedure was applied to the resulting data set. The following results were obtained: SST = 10,850; SSTR =...
Three different methods for assembling a product were proposed by an industrial engineer. To investigate the...
Three different methods for assembling a product were proposed by an industrial engineer. To investigate the number of units assembled correctly with each method, 30 employees were randomly selected and randomly assigned to the three proposed methods in such a way that each method was used by 10 workers. The number of units assembled correctly was recorded, and the analysis of variance procedure was applied to the resulting data set. The following results were obtained: ; SST= 10,810; SSTR=4590 a....
Three different methods for assembling a product were proposed by an industrial engineer. To investigate the...
Three different methods for assembling a product were proposed by an industrial engineer. To investigate the number of units assembled correctly with each method,  employees were randomly selected and randomly assigned to the three proposed methods in such a way that each method was used by  workers. The number of units assembled correctly was recorded, and the analysis of variance procedure was applied to the resulting data set. The following results were obtained: ; . a. Set up the ANOVA table for...
Three different methods for assembling a product were proposed by an industrial engineer. To investigate the...
Three different methods for assembling a product were proposed by an industrial engineer. To investigate the number of units assembled correctly with each method, 39 employees were randomly selected and randomly assigned to the three proposed methods in such a way that each method was used by 13 workers. The number of units assembled correctly was recorded, and the analysis of variance procedure was applied to the resulting data set. The following results were obtained: SST = 13,490; SSTR =...
Three different methods for assembling a product were proposed by an industrial engineer. To investigate the...
Three different methods for assembling a product were proposed by an industrial engineer. To investigate the number of units assembled correctly with each method, 42 employees were randomly selected and randomly assigned to the three proposed methods in such a way that each method was used by 14 workers. The number of units assembled correctly was recorded, and the analysis of variance procedure was applied to the resulting data set. The following results were obtained: SST = 13,960; SSTR =...
You may need to use the appropriate technology to answer this question. Three different methods for...
You may need to use the appropriate technology to answer this question. Three different methods for assembling a product were proposed by an industrial engineer. To investigate the number of units assembled correctly with each method, 30 employees were randomly selected and randomly assigned to the three proposed methods in such a way that each method was used by 10 workers. The number of units assembled correctly was recorded, and the analysis of variance procedure was applied to the resulting...
In an experiment designed to test the output levels of three different treatments, the following results...
In an experiment designed to test the output levels of three different treatments, the following results were obtained: SST= 420 SSTR=150 NT=19. Set up the ANOVA table and test for any significant difference between the mean output levels of the three treatments. Use A=.05. Source of Variation Sum of Squares Degrees of Freedom Mean Square (to 2 decimals) (to 2 decimals) -value (to 4 decimals) Treatments 150 Error Total 420 The P-value is - Select your answer -less than .01between...
24. Several employees have submitted different methods of assembling a subassembly. Sample data for each method...
24. Several employees have submitted different methods of assembling a subassembly. Sample data for each method are shown below: Minutes Required for Assembly Sample Number Lind's Method Szabo's Method Carl's Method Manley's Method 1 16.6 22.4 31.4 18.4 2 17.0 21.5 33.4 19.6 3 16.9 22.6 30.1 17.6 How many treatments are there? Multiple Choice 3 4 12 0 25. Given the following ANOVA table for three treatments, each of which having six observations (i.e. there are a total of...
In an experiment designed to test the output levels of three different treatments, the following results...
In an experiment designed to test the output levels of three different treatments, the following results were obtained: SST = 320, SSTR = 130, nT = 19. Set up the ANOVA table. (Round your values for MSE and F to two decimal places, and your p-value to four decimal places.) Source of Variation Sum of Squares Degrees of Freedom Mean Square F p-value Treatments Error Total Test for any significant difference between the mean output levels of the three treatments....
The following data were obtained for a randomized block design involving five treatments and three blocks:...
The following data were obtained for a randomized block design involving five treatments and three blocks: SST = 510, SSTR = 370, SSBL = 95. Set up the ANOVA table. (Round your value for F to two decimal places, and your p-value to three decimal places.) Source of Variation Sum of Squares Degrees of Freedom Mean Square F p-value Treatments Blocks Error Total Test for any significant differences. Use α = 0.05. State the null and alternative hypotheses. H0: Not...