x | (x-xbar)^2 | |||
0.56 | 0.00018 | Mean(x)=xbar=sum(x)/n | 0.546571 | |
0.71 | 0.190595 | standard deviation(s)=sum(x-xbar)^2/n-1 | 0.33309 | |
0.11 | 0.170923 | n | 7 | |
0.96 | 0.17688 | for 90 % confidence level with degree of freedom (n-1)=13 | ||
0.126 | 0.002169 | =1-c%=1-0.99=0.01 | 0.01 | |
0.5 | 0.098237 | degrres of freedom | 6 | |
0.86 | 10.75465 | t=critical value find using t-table with corresponding df=(n-1) | 3.707428 | |
sum | 3.826 | 11.39364 | Margin of error =t*s/sqrt(n) | 0.466751 |
LCL=xbar-ME | 0.07982 | |||
UCL=xbar+ME | 1.013322 |
#
the confidence interval estimate of the population mean μ is
(xbar-ME<μ<xbar+ME)
(0.07982<μ<1.0133)
Get Answers For Free
Most questions answered within 1 hours.