Question

The Central Limit Theorem says that when sample size n is taken from any population with...

The Central Limit Theorem says that when sample size n is taken from any population with mean μ and standard deviation σ when n is large, which of the following statements are true?

  1. The distribution of the sample mean is approximately Normal.
  2. The standard deviation is equal to that of the population.
  3. The distribution of the population is exactly Normal.
  4. The distribution is biased.

Homework Answers

Answer #1

Solution:

Given: The Central Limit Theorem says that when sample size n is taken from any population with mean μ and standard deviation σ when n is large, then the distribution of the sample mean is approximately Normal.

thus first options is correct.

In this case  standard deviation of sample means = which is not equal to population standard deviation, thus second option is not correct.

Since population distribution is unknown, we can not say distribution is exactly Normal. Thus third option is not correct.

We either say distribution is normally or approximately Normal or Non-normal, so fourth option is not correct.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
What is wrong with the following statement of the central limit theorem? Central Limit Theorem.  If the...
What is wrong with the following statement of the central limit theorem? Central Limit Theorem.  If the random variables X1, X2, X3, …, Xn are a random sample of size n from any distribution with finite mean μ and variance σ2, then the distribution of will be approximately normal, with a standard deviation of σ / √n.
Which of the following statements is not consistent with the Central Limit Theorem? 1. The Central...
Which of the following statements is not consistent with the Central Limit Theorem? 1. The Central Limit Theorem applies to non-normal population distributions. 2. The standard deviation of the sampling distribution will be equal to the population standard deviation. 3. The sampling distribution will be approximately normal when the sample size is sufficiently large. 4. The mean of the sampling distribution will be equal to the population mean.
Question Central Limit Theorem a)According to the Central Limit Theorem, what are the mean and standard...
Question Central Limit Theorem a)According to the Central Limit Theorem, what are the mean and standard deviation of the sampling distribution of sample means? b)A population has a mean ?=1800 and a standard deviation ?=40. Find the mean and standard deviation of the sampling distribution of sample means when the sample size n=100.
Given a population with mean μ=100 and variance σ2=81, the Central Limit Theorem applies when the...
Given a population with mean μ=100 and variance σ2=81, the Central Limit Theorem applies when the sample size n≥30. A random sample of size n=30 is obtained. What are the mean, the variance, and the standard deviation of the sampling distribution for the sample mean? Describe the probability distribution of the sample mean and draw the graph of this probability distribution with its mean and standard deviation. What is the probability that x<101.5? What is the probability that x>102? What...
According to the central limit theorem, if a sample of size 81 is drawn from a...
According to the central limit theorem, if a sample of size 81 is drawn from a population with a variance of 16, the standard deviation of the distribution of the sample means would equal _______. .98 .44 .68 .87 .75
The Central Limit Theorem indicates that in selecting random samples from a population, the sampling distribution...
The Central Limit Theorem indicates that in selecting random samples from a population, the sampling distribution of the the sample mean x-bar can be approximated by a normal distribution as the sample size becomes large. Select one: True False
Apply the Central Limit Theorem for Sample Means A population of values has a normal distribution...
Apply the Central Limit Theorem for Sample Means A population of values has a normal distribution with μ=77 and σ=9.2. You intend to draw a random sample of size n=30. Find the probability that a sample of size n=30n=30 is randomly selected with a mean less than 76.8. P(M < 76.8) = Enter your answers as numbers accurate to 4 decimal places. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are accepted.
Which of the following is NOT a conclusion of the Central Limit​ Theorem? Choose the correct...
Which of the following is NOT a conclusion of the Central Limit​ Theorem? Choose the correct answer below. A. The distribution of the sample means x overbar ​will, as the sample size​ increases, approach a normal distribution. B. The mean of all sample means is the population mean mu. C. The distribution of the sample data will approach a normal distribution as the sample size increases. D. The standard deviation of all sample means is the population standard deviation divided...
When σ is unknown and the sample is of size n ≥ 30, there are two...
When σ is unknown and the sample is of size n ≥ 30, there are two methods for computing confidence intervals for μ. Method 1: Use the Student's t distribution with d.f. = n − 1. This is the method used in the text. It is widely employed in statistical studies. Also, most statistical software packages use this method. Method 2: When n ≥ 30, use the sample standard deviation s as an estimate for σ, and then use the...
According to the central limit theorem, a sample mean distribution is aproximately a normal distribution ,...
According to the central limit theorem, a sample mean distribution is aproximately a normal distribution , what are the mean and standard deviation of this normal distribution ?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT