Question

For a normal distributed population: N(μ, σ2 ), assume σ is a known constant, and we...

For a normal distributed population: N(μ, σ2

), assume σ is a known constant, and we want to construct
a 1-α level CI for μ. If we want the length of CI to be at most a, where a is a given positive constant,
then what’s the requirement of selecting sample size?

b)Same as question 1, but now is unknown. If we know that the sample variance s2 stables around some level and can be treated as a xed constant. Then what's the requirement of selecting sample size?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that X1,...,Xn are iid N(μ,σ2) where μ is unknown but σ is known.  μ>=2. Let z(μ)=μ3....
Suppose that X1,...,Xn are iid N(μ,σ2) where μ is unknown but σ is known.  μ>=2. Let z(μ)=μ3. Find an initial unbiased estimator T for z(μ). Next, derive the Rao-Blackwellized version of T.
Suppose we take a random sample X1,…,X6 from a normal population with an unknown variance σ2...
Suppose we take a random sample X1,…,X6 from a normal population with an unknown variance σ2 and unknown mean μ. Construct a two-sided 99% confidence interval for μ if the observations are given by 2.59,0.89,2.69,0.04,−0.26,1.31
Suppose that a population is known to be normally distributed with μ = 2,400 and σ...
Suppose that a population is known to be normally distributed with μ = 2,400 and σ = 220. If a random sample of size n = 8 is​ selected, calculate the probability that the sample mean will exceed 2,500.
Let ​Y​ be a normal random variable with mean ​μ​ and variance ​σ​2 . Assume that...
Let ​Y​ be a normal random variable with mean ​μ​ and variance ​σ​2 . Assume that ​μ​ is known but ​σ​2 is unknown. ​​Show that ((​Y​-​μ​)/​σ​)2​ ​is a pivotal quantity. Use this pivotal quantity to derive a 1-​α confidence interval for ​σ​2. (The answer should be left in terms of critical values for the appropriate distribution.)
Suppose we have a random sample of size 50 from a N(μ,σ2) PDF. We wish to...
Suppose we have a random sample of size 50 from a N(μ,σ2) PDF. We wish to test H0: μ=10 versus H1: μ=10. The sample moments are x ̄ = 13.4508 and s2 = 65.8016. (a) Find the critical region C and test the null hypothesis at the 5% level. What is your decision? (b) What is the p-value for your decision? (c) What is a 95% confidence interval for μ?
Suppose that a population is known to be normally distributed with μ =2,300 and σ=250. If...
Suppose that a population is known to be normally distributed with μ =2,300 and σ=250. If a random sample of size n =8 is​ selected, calculate the probability that the sample mean will exceed 2,400.
The null and alternative about hypotheses a normal population N (μ, σ^2) is H0, μ=21 ,...
The null and alternative about hypotheses a normal population N (μ, σ^2) is H0, μ=21 , H1: μ<21. Choose a sample of size n=17 with X(average)= 23 and S^2 = (3.98)^2. The statistic we should use is____, the size of the lest. α=0.05 , and the result of the test is____H0.
Suppose we have a random sample of size 50 from a N(μ,σ2) PDF. We wish to...
Suppose we have a random sample of size 50 from a N(μ,σ2) PDF. We wish to test H0: μ=10 versus H1: μ=10. The sample moments are x ̄ = 13.4508 and s2 = 65.8016. (a) Test the null hypothesis that σ2 = 64 versus a two-sided alternative. First, find the critical region and then give your decision. (b) (5 points) Find a 95% confidence interval for σ2? (c) (5 points) If you are worried about performing 2 statistical tests on...
Suppose X1, · · · , Xn from a normal distribution N(µ, σ2 ) where µ...
Suppose X1, · · · , Xn from a normal distribution N(µ, σ2 ) where µ is unknown but σ is known. Consider the following hypothesis testing problem: H0 : µ = µ0 vs. Ha : µ > µ0 Prove that the decision rule is that we reject H0 if X¯ − µ0 σ/√ n > Z(1 − α), where α is the significant level, and show that this is equivalent to rejecting H0 if µ0 is less than the...
Assume a normal population with known variance σ2, a random sample (n< 30) is selected. Let...
Assume a normal population with known variance σ2, a random sample (n< 30) is selected. Let x¯,s represent the sample mean and sample deviation. (1)write down the formula: 98% one-sided confidence interval with upper bound for the population mean. (2) show how to derive the confidence interval formula in (1).