Question

Let X be a random variable with probability density function

f(x) = {3/10x(3-x) if 0<=x<=2

.........{0 otherwise

a) Find the standard deviation of *X* to four decimal
places.

b) Find the mean of *X* to four decimal places.

c) Let y=x^{2} find the probability density function
f_{y} of *Y.*

Answer #1

Let X be the random variable with probability density function
f(x) = 0.5x for 0 ≤ x ≤ 2 and zero otherwise. Find the
mean and standard deviation of the random variable X.

A continuous random variable X has the following
probability density function F(x) = cx^3, 0<x<2 and 0
otherwise
(a) Find the value c such that f(x) is indeed
a density function.
(b) Write out the cumulative distribution function of
X.
(c) P(1 < X < 3) =?
(d) Write out the mean and variance of X.
(e) Let Y be another continuous random variable such
that when 0 < X < 2, and 0 otherwise. Calculate
the mean of Y.

Let X be a continuous random variable with the probability
density function f(x) = C x, 6 ≤ x ≤ 25, zero otherwise.
a. Find the value of C that would make f(x) a valid probability
density function. Enter a fraction (e.g. 2/5): C =
b. Find the probability P(X > 16). Give your answer to 4
decimal places.
c. Find the mean of the probability distribution of X. Give your
answer to 4 decimal places.
d. Find the median...

Suppose that X1 and X2 are independent continuous random
variables with the same probability density function as: f(x) = ( x
2 0 < x < 2, 0 otherwise. Let a new random variable be Y =
min(X1, X2,).
a) Use distribution function method to find the probability
density function of Y, fY (y).
b) Compute P(Y > 1).
c) Compute E(Y )

Suppose that X1 and X2 are independent continuous random
variables with the same probability density function as: f(x) = ( x
2 0 < x < 2, 0 otherwise. Let a new random variable be Y =
min(X1, X2,).
a) Use distribution function method to find the probability
density function of Y, fY (y).
b) Compute P(Y > 1).

2. Let the probability density function (pdf) of random variable
X be given by:
f(x) = C (2x -
x²),
for
0< x < 2,
f(x) = 0,
otherwise
Find the value of
C.
(5points)
Find cumulative probability function
F(x)
(5points)
Find P (0 < X < 1), P (1< X < 2), P (2 < X
<3)
(3points)
Find the mean, : , and variance,
F².
(6points)

Let X be a random variable with density function f(x) = 2 5 x
for x ∈ [2, 3] and f(x) = 0, otherwise. (a) (6 pts) Compute E[(X −
2)3 ] without attempting to find the density function of Y = (X −
2)3 . (b) (6 pts) Find the density function of Y = (X − 2)3

suppose x is a continuous random variable with probability
density function f(x)= (x^2)/9 if 0<x<3 0 otherwise
find the mean and variance of x

Let X be a continuous random variable with a probability density function
fX (x) = 2xI (0,1) (x) and let it be the function´
Y (x) = e^−x
a. Find the expression for the probability density function fY (y).
b. Find the domain of the probability density function fY (y).

Part A
The variable X(random variable) has a density function of the
following
f(x) = {5e-5x if 0<= x < infinity and 0
otherwise}
Calculate E(ex)
Part B
Let X be a continuous random variable with probability density
function
f (x) = {6/x2 if 2<x<3 and 0 otherwise }
Find E (ln (X)).
.

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 1 minute ago

asked 14 minutes ago

asked 20 minutes ago

asked 25 minutes ago

asked 47 minutes ago

asked 57 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago