Let X be distributed as a geometric with a probability of success of 0.10. Give a truncated histogram.
The pdf of X is,
Following table shows the different probabilites:
X | P(X=x) |
1 | 0.1 |
2 | 0.09 |
3 | 0.081 |
4 | 0.0729 |
5 | 0.06561 |
6 | 0.059049 |
7 | 0.0531441 |
8 | 0.04782969 |
9 | 0.043046721 |
10 | 0.038742049 |
11 | 0.034867844 |
12 | 0.03138106 |
13 | 0.028242954 |
14 | 0.025418658 |
15 | 0.022876792 |
16 | 0.020589113 |
17 | 0.018530202 |
18 | 0.016677182 |
19 | 0.015009464 |
20 | 0.013508517 |
21 | 0.012157665 |
22 | 0.010941899 |
23 | 0.009847709 |
24 | 0.008862938 |
25 | 0.007976644 |
26 | 0.00717898 |
27 | 0.006461082 |
28 | 0.005814974 |
29 | 0.005233476 |
30 | 0.004710129 |
31 | 0.004239116 |
32 | 0.003815204 |
33 | 0.003433684 |
34 | 0.003090315 |
35 | 0.002781284 |
36 | 0.002503156 |
37 | 0.00225284 |
38 | 0.002027556 |
39 | 0.0018248 |
40 | 0.00164232 |
Following is the histogram:
Get Answers For Free
Most questions answered within 1 hours.