Question

In a certain school district, it was observed that 31% of the students in the element...

In a certain school district, it was observed that 31% of the students in the element schools were classified as only children (no siblings). However, in the special program for talented and gifted children, 77 out of 204 students are only children. The school district administrators want to know if the proportion of only children in the special program is significantly different from the proportion for the school district. Test at the α=0.05α=0.05 level of significance.

Using the normal approximation for the binomial distribution (without the continuity correction), what is the test statistic for this sample based on the sample proportion?
z=
(Report answer as a decimal accurate to 3 decimal places.)

You are now ready to calculate the P-value for this sample.
P-value =
(Report answer as a decimal accurate to 4 decimal places.)

Homework Answers

Answer #1

Solution :

This is the two tailed test .

The null and alternative hypothesis is

H0 : p = 0.31

Ha : p 0.31

= x / n = 77/204 = 0.3775

P0 = 0.31

1 - P0 = 1-0.31 =0.69

Test statistic = z

= - P0 / [P0 * (1 - P0 ) / n]

= 0.3775- 0.31/ [0.31*(0.69) /204 ]

= 2.083

P(z >2.083 ) = 1 - P(z < 2.083) = 0.0372

P-value = 0.0372

= 0.05    

p= 0.0372 < 0.05, it is concluded that the null hypothesis is rejected.

Reject the null hypothesis .

There is enough evidence to claim that the population proportion p is different than p0​, at the α = 0.05 significance level.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In a certain school district, it was observed that 33% of the students in the element...
In a certain school district, it was observed that 33% of the students in the element schools were classified as only children (no siblings). However, in the special program for talented and gifted children, 107 out of 287 students are only children. The school district administrators want to know if the proportion of only children in the special program is significantly different from the proportion for the school district. Test at the ? = 0.05 level of significance. H0:p=0.33 Ha:p?0.33...
In a certain school district, it was observed that 31% of the students in the element...
In a certain school district, it was observed that 31% of the students in the element schools were classified as only children (no siblings). However, in the special program for talented and gifted children, 106 out of 289 students are only children. The school district administrators want to know if the proportion of only children in the special program is significantly different from the proportion for the school district. Test at the α=0.05α=0.05 level of significance. What is the hypothesized...
In a certain school district, it was observed that 31% of the students in the element...
In a certain school district, it was observed that 31% of the students in the element schools were classified as only children (no siblings). However, in the special program for talented and gifted children, 78 out of 215 students are only children. The school district administrators want to know if the proportion of only children in the special program is significantly different from the proportion for the school district. Test at the α=0.01α=0.01 level of significance. What is the hypothesized...
In a certain school district, it was observed that 26% of the students in the element...
In a certain school district, it was observed that 26% of the students in the element schools were classified as only children (no siblings). However, in the special program for talented and gifted children, 93 out of 313 students are only children. The school district administrators want to know if the proportion of only children in the special program is significantly different from the proportion for the school district. Test at the α = 0.05 level of significance. What is...
In a certain school district, it was observed that 33% of the students in the element...
In a certain school district, it was observed that 33% of the students in the element schools were classified as only children (no siblings).  However, in the special program for talented and gifted children, 92 out of 246 students are only children.  The school district administrators want to know if the proportion of only children in the special program is significantly different from the proportion for the school district. Test at the α=0.02α=0.02 level of significance. What is the hypothesized population proportion...
In a certain school district, it was observed that 25% of the students in the element...
In a certain school district, it was observed that 25% of the students in the element schools were classified as only children (no siblings). However, in the special program for talented and gifted children, 114 out of 386 students are only children. The school district administrators want to know if the proportion of only children in the special program is significantly different from the proportion for the school district. Test at the α=0.05 level of significance. What is the hypothesized...
in a certain school district, it was observed that 28% of the students in the element...
in a certain school district, it was observed that 28% of the students in the element schools were classified as only children (no siblings). However, in the special program for talented and gifted children, 98 out of 272 students are only children. The school district administrators want to know if the proportion of only children in the special program is significantly different from the proportion for the school district. Test at the α = 0.02 level of significance. What is...
In a certain school district, it was observed that 26% of the students in the element...
In a certain school district, it was observed that 26% of the students in the element schools were classified as only children (no siblings). However, in the special program for talented and gifted children, 138 out of 425 students are only children. The school district administrators want to know if the proportion of only children in the special program is significantly different from the proportion for the school district. Test at the α=0.01α=0.01 level of significance. What is the hypothesized...
In a certain school district, it was observed that 29% of the students in the element...
In a certain school district, it was observed that 29% of the students in the element schools were classified as only children (no siblings). However, in the special program for talented and gifted children, 91 out of 257 students are only children. The school district administrators want to know if the proportion of only children in the special program is significantly different from the proportion for the school district. Test at the α=0.02α=0.02 level of significance. What is the hypothesized...
7. You wish to test the following at a significance level of α=0.05α=0.05.       H0:p=0.85H0:p=0.85       H1:p>0.85H1:p>0.85 You...
7. You wish to test the following at a significance level of α=0.05α=0.05.       H0:p=0.85H0:p=0.85       H1:p>0.85H1:p>0.85 You obtain a sample of size n=250n=250 in which there are 225 successful observations. For this test, we use the normal distribution as an approximation for the binomial distribution. For this sample... The test statistic (zz) for the data =  (Please show your answer to three decimal places.) The p-value for the sample =  (Please show your answer to four decimal places.) The p-value is... greater than...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT