Question

LetX1,...,Xnbe a random sample from a continuous distribution with the probability densityfunction (pdf) with an unknown...

LetX1,...,Xnbe a random sample from a continuous distribution with the probability densityfunction (pdf) with an unknown parameterθ:fX(x;θ) ={e−(x−θ), x > θ,0,otherwise.Assume that the prior distribution ofθhas the following density:fΘ(θ) ={2e−2(θ−1), θ >1,0,otherwise.(a) For the observed data 2.1,1.5,1.8,2.3,1.6 (n= 5), find the posterior density ofθ.

For the data in (a), find the Bayes estimates ofθunder the squared and absolute loss.

Homework Answers

Answer #2

answered by: anonymous
Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In an experiment, suppose X1; : : : ; Xnjθ is i.i.d with density f(xjθ) =...
In an experiment, suppose X1; : : : ; Xnjθ is i.i.d with density f(xjθ) = θe^(-xθ); 0 ≤ x > 1; θ > 0, and the prior distribution of θ is Exponential distribution with density π(θ) = (1/β) * e^(-θ/β), where β is a known positive constant. (a) (15pts) Find the posterior distribution of θ. (b) (5pts) Find the Bayes estimator of θ (the Bayes rule estimator with respect to the squared error loss). 1 (c) (10pts) Find the...
Let X1,...,Xn∼iid Gamma(3,1/θ) and we assume the prior for θ is InvGamma(10,2). (a) Find the posterior...
Let X1,...,Xn∼iid Gamma(3,1/θ) and we assume the prior for θ is InvGamma(10,2). (a) Find the posterior distribution for θ. (b) If n= 10 and   ̄x= 18.2, find the Bayes estimate under squared error loss. (c) The variance of the data distribution is φ= 3θ2. Find the Bayes estimator (under squared error loss) for φ.Let X1,...,Xn∼iid Gamma(3,1/θ) and we assume the prior for θ is InvGamma(10,2). (a) Find the posterior distribution for θ. (b) If n= 10 and   ̄x= 18.2, find...
Let X1,..., Xn be a random sample from a distribution with pdf as follows: fX(x) =...
Let X1,..., Xn be a random sample from a distribution with pdf as follows: fX(x) = e^-(x-θ) , x > θ 0 otherwise. Find the sufficient statistic for θ. Find the maximum likelihood estimator of θ. Find the MVUE of θ,θˆ Is θˆ a consistent estimator of θ?
Let X be a continuous random variable with probability density function (pdf) ?(?) = ??^3, 0...
Let X be a continuous random variable with probability density function (pdf) ?(?) = ??^3, 0 < ? < 2. (a) Find the constant c. (b) Find the cumulative distribution function (CDF) of X. (c) Find P(X < 0.5), and P(X > 1.0). (d) Find E(X), Var(X) and E(X5 ).
Let X1, X2, ..., Xn be a random sample from a distribution with probability density function...
Let X1, X2, ..., Xn be a random sample from a distribution with probability density function f(x; θ) = (θ 4/6)x 3 e −θx if 0 < x < ∞ and 0 otherwise where θ > 0 . a. Justify the claim that Y = X1 + X2 + ... + Xn is a complete sufficient statistic for θ. b. Compute E(1/Y ) and find the function of Y which is the unique minimum variance unbiased estimator of θ. b.  Compute...
X and Y are continuous random variables. Their joint probability distribution function is : f(x,y) =...
X and Y are continuous random variables. Their joint probability distribution function is : f(x,y) = 1/5(y+2) , 0 < y < 1, y-1 < x < y +1 = 0, otherwise a) Find marginal density of Y, fy(y) b) Calculate E[X | Y = 0]
Suppose that X1 and X2 are independent continuous random variables with the same probability density function...
Suppose that X1 and X2 are independent continuous random variables with the same probability density function as: f(x) = ( x 2 0 < x < 2, 0 otherwise. Let a new random variable be Y = min(X1, X2,). a) Use distribution function method to find the probability density function of Y, fY (y). b) Compute P(Y > 1).
For example, the Prior distribution of uniform is uniformly distributed at intervals (2, 5). And the...
For example, the Prior distribution of uniform is uniformly distributed at intervals (2, 5). And the random variable X is uniformly distributed at intervals (0, θ). Determine the estimated parameters of θ with the Bayes method for the loss function in the form of absolute error in one observation with the value X = 1?
2. Let X be a continuous random variable with pdf given by f(x) = k 6x...
2. Let X be a continuous random variable with pdf given by f(x) = k 6x − x 2 − 8 2 ≤ x ≤ 4; 0 otherwise. (a) Find k. (b) Find P(2.4 < X < 3.1). (c) Determine the cumulative distribution function. (d) Find the expected value of X. (e) Find the variance of X
Suppose that X1 and X2 are independent continuous random variables with the same probability density function...
Suppose that X1 and X2 are independent continuous random variables with the same probability density function as: f(x) = ( x 2 0 < x < 2, 0 otherwise. Let a new random variable be Y = min(X1, X2,). a) Use distribution function method to find the probability density function of Y, fY (y). b) Compute P(Y > 1). c) Compute E(Y )
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT