Calculate the two-sided 95% confidence interval for the population standard deviation (sigma) given that a sample of size n=13 yields a sample standard deviation of 5.75.
Your answer: |
|
---|---|
4.32 < sigma < 1.68 |
|
5.26 < sigma < 6.85 |
|
7.28 < sigma < 0.12 |
|
6.62 < sigma < 10.89 |
|
4.56 < sigma < 8.31 |
|
5.18 < sigma < 18.58 |
|
4.56 < sigma < 8.54 |
|
5.71 < sigma < 15.54 |
|
7.20 < sigma < 7.52 |
|
4.12 < sigma < 9.49 |
Sample Size, n= 13
Sample Standard Deviation, s= 5.7500
Confidence Level, CL= 0.95
Degrees of Freedom, DF=n-1 = 12
alpha, α=1-CL= 0.05
alpha/2 , α/2= 0.025
Lower Chi-Square Value= χ²1-α/2 =
4.404
Upper Chi-Square Value= χ²α/2 =
23.337
confidence interval for std dev is
lower bound= √[(n-1)s²/χ²α/2] = √(12*5.75² /
23.3367)= 4.12
upper bound= √[(n-1)s²/χ²1-α/2] = √(12*5.75² /
4.4038)= 9.49
4.12 < sigma < 9.49 |
Get Answers For Free
Most questions answered within 1 hours.