Question

1. (8 pts total) Assume that a single fair die is tossed 100 times. Let X...

1. (8 pts total) Assume that a single fair die is tossed 100 times. Let X denote the number obtained in a given toss (so X is 1, 2, 3, 4, 5, or 6). Suppose that x = 2.83 for these 100 tosses. It can be shown that µ = 3.5 and σ =35/12 = 2.91666 . . . (a) (7 pts) Find a 95% confidence interval for µ, based on the given value of x. (b)(1 pt) Did the interval you constructed trap the true mean µ? (should get 2.83±0.572 for part a)

Homework Answers

Answer #1

(A) z critical for 95% interval is z = 1.96 (using z table)

population standard deviation

sample mean

sample size n = 100

confidence interval =

(B) Confidence interval obtained in first part is

CI = (2.258, 3.402)

Population mean 3.5 is not included in the confidence interval as the upper limit of confidence interval is below the population mean.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose a fair die is tossed three times. Let X be the smallest of the three...
Suppose a fair die is tossed three times. Let X be the smallest of the three faces that appear. a)Find pX(k). b)Let Y be the same of the three faces that appear, Find pY(k). please explain how to get that answer
1. A fair coin will be tossed 200,000 times. Let X denote the number of Tails....
1. A fair coin will be tossed 200,000 times. Let X denote the number of Tails. (a) What is the expected value and the standard deviation of X? (b) Consider a game in which you have to pay $5 in order to earn $log10(X) when X > 0. Is this a fair game? If not, your expected profit is positive or negative?
A fair coin is tossed for n times independently. (i) Suppose that n = 3. Given...
A fair coin is tossed for n times independently. (i) Suppose that n = 3. Given the appearance of successive heads, what is the conditional probability that successive tails never appear? (ii) Let X denote the probability that successive heads never appear. Find an explicit formula for X. (iii) Let Y denote the conditional probability that successive heads appear, given no successive heads are observed in the first n − 1 tosses. What is the limit of Y as n...
A fair coin is tossed three times. Let X be the number of heads among the...
A fair coin is tossed three times. Let X be the number of heads among the first two tosses and Y be the number of heads among the last two tosses. What is the joint probability mass function of X and Y? What are the marginal probability mass function of X and Y i.e. p_X (x)and p_Y (y)? Find E(X) and E(Y). What is Cov(X,Y) What is Corr (X,Y) Are X and Y independent? Explain. Find the conditional probability mass...
A fair coin has been tossed four times. Let X be the number of heads minus...
A fair coin has been tossed four times. Let X be the number of heads minus the number of tails (out of four tosses). Find the probability mass function of X. Sketch the graph of the probability mass function and the distribution function, Find E[X] and Var(X).
A fair die is rolled three times. Let X denote the number of different faces showing,...
A fair die is rolled three times. Let X denote the number of different faces showing, X = 1, 2, 3. Find E(X). Give a good explanation please
A fair six-sided die is rolled 10 independent times. Let X be the number of ones...
A fair six-sided die is rolled 10 independent times. Let X be the number of ones and Y the number of twos. (a) (3 pts) What is the joint pmf of X and Y? (b) (3 pts) Find the conditional pmf of X, given Y = y. (c) (3 pts) Given that X = 3, how is Y distributed conditionally? (d) (3 pts) Determine E(Y |X = 3). (e) (3 pts) Compute E(X2 − 4XY + Y2).
1. A coin is tossed 3 times. Let x be the random discrete variable representing the...
1. A coin is tossed 3 times. Let x be the random discrete variable representing the number of times tails comes up. a) Create a sample space for the event;    b) Create a probability distribution table for the discrete variable x;                 c) Calculate the expected value for x. 2. For the data below, representing a sample of times (in minutes) students spend solving a certain Statistics problem, find P35, range, Q2 and IQR. 3.0, 3.2, 4.6, 5.2 3.2, 3.5...
Q1. Let p denote the probability that the coin will turn up as a Head when...
Q1. Let p denote the probability that the coin will turn up as a Head when tossed. Given n independent tosses of the same coin, what is the probability distribution associated with the number of Head outcomes observed? Q2. Suppose you have information that a coin in your possession is not a fair coin, and further that either Pr(Head|p) = p is certain to be equal to either p = 0.33 or p = 0.66. Assuming you believe this information,...
Think about the following game: A fair coin is tossed 10 times. Each time the toss...
Think about the following game: A fair coin is tossed 10 times. Each time the toss results in heads, you receive $10; for tails, you get nothing. What is the maximum amount you would pay to play the game? Define a success as a toss that lands on heads. Then the probability of a success is 0.5, and the expected number of successes after 10 tosses is 10(0.5) = 5. Since each success pays $10, the total amount you would...