Question

Scores of students in a large Statistics class are normally distributed with a mean of 75...

Scores of students in a large Statistics class are normally distributed with a mean of 75 points and a standard deviation of 5 points.

  1. Find the probability that a student scores more than 80 points
  2. If 100 students are picked at random, how many do you expect to score below 70 points?
  3. If top 10% of students obtain an A grade, how much should a student obtain to get an A grade.
  4. Suppose four students are picked at random, find the probability that the average score of those four students is more than 80 points.

Homework Answers

Answer #1

µ = 75

σ = 5

x = 80

z = (x - µ)/σ = (80 - 75)/5 = 1

The probability that a student scores more than 80 points is 0.1587.

If 100 students are picked at random, 16 would score below 70 points.

z = 1.28

1.28 = (x - 75)/5

x = 1.28*5 + 75 = 81.4

81.4 should a student obtain to get an A grade.

z = (x - µ)/σ/√n = (80 - 75)/5/√4 = 2

The probability that the average score of those four students is more than 80 points is 0.0228.

Please give me a thumbs-up if this helps you out. Thank you!

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Scores of students in a large Statistics class test are normally distributed with a mean of...
Scores of students in a large Statistics class test are normally distributed with a mean of 75 points and a standard deviation of 5 points.Find the probability that a student scores more than 80 pointsIf 100 students are picked at random, how many do you expect to score below 70 points?If top 10% of students obtain an A grade, how much should a student obtain to get an A grade.Suppose four students are picked at random, find the probability that...
Assume that statistics scores that are normally distributed with a mean 75 and a standard deviation...
Assume that statistics scores that are normally distributed with a mean 75 and a standard deviation of 4.8 (a) Find the probability that a randomly selected student has a score greater than 72. (b) Find the probability that a randomly selected student has a score between 70 and 80. (c) Find the statistics score separating the bottom 99.5% from the top 0.5%. (d) Find the statistics score separating the top 64.8% from the others.
Student scores on the Stats final exam are normally distributed with a mean of 75 and...
Student scores on the Stats final exam are normally distributed with a mean of 75 and a standard deviation of 6.5 Find the probability of the following: (use 4 decimal places) a.) The probability that one student chosen at random scores above an 80. b.) The probability that 10 students chosen at random have a mean score above an 80. c.) The probability that one student chosen at random scores between a 70 and an 80. d.) The probability that...
In a large section of a Statistics class. The scores for the final are normally distributed,...
In a large section of a Statistics class. The scores for the final are normally distributed, with a mean of 75 (µ) and a standard deviation of 8 (σ). Grades are assigned according to the following (partial) rule: • The top 10% receive “A”s. • Those with scores 64 or below receive “F”s. (a) What is the cutoff level for “A”s (the minimum score on the exam for an “A”)? (5 pts.) (b) What percent of students get “F”s? (5...
The final exam scores in a statistics class were normally distributed with a mean of 70...
The final exam scores in a statistics class were normally distributed with a mean of 70 and a standard deviation of five. What is the probability that a student scored more than 75% on the exam?
The scores for the final exam in a particular class are approximately normally distributed with a...
The scores for the final exam in a particular class are approximately normally distributed with a meann of 78.4 points and standard deviation of 5.7. A. What score would a student nneed to score inn the top 20% of sudent scores? Round two decimal places. B. What is the probablity that a randomly selected group of 36 students will have a eman score of more than 80 points? Innclude a probability statement. Round four decimal places.
For a certain very large group of students, test scores are normally distributed with a mean...
For a certain very large group of students, test scores are normally distributed with a mean of 70 and a standard deviation of 8. A student will receive an A if he gets at least a 92, and must earn at least a 67 in order to pass. a. What is the probability that a student selected at random will get an A on the test? b. What is the probability that a random sample of 20 students will have...
Suppose the scores on a reading ability test are normally distributed with a mean of 65...
Suppose the scores on a reading ability test are normally distributed with a mean of 65 and a standard deviation of 8. A) If one student is chosen at random, what is the probability that the student's score is greater than 81 points"? B) If 500 students took the reading ability test HOW MANY students would expect to earn a score greater than 81 points? c) Find the probability of randomly selecting 35 students (all from the same class) that...
Scores on a statistics final in a large class were normally distributed with a mean of...
Scores on a statistics final in a large class were normally distributed with a mean of 79 and a standard deviation of 12 . Use the Cumulative Normal Distribution Table to answer the following. (a) What proportion of the scores were above 90 ? (b) What proportion of the scores were below 66 ? (c) What is the probability that a randomly chosen score is between 74 and 80 ? Round answers to at least four decimal places.
If, in a class of 50 students, the grades are normally distributed with a mean of...
If, in a class of 50 students, the grades are normally distributed with a mean of 76 and a standard deviation of 10 points, what minimum grade would a student have to get to be considered "unusually" high? (more than two standard deviations above mean)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT