Question

8.) Now, do a simple linear regression model for LifeExpect2017 vs. AverageDailyPM2.5. For credit, provide the...

8.) Now, do a simple linear regression model for LifeExpect2017 vs. AverageDailyPM2.5. For credit, provide the summary output for this simple linear regression model.

> Model2 <- lm(LifeExpect2017~ AverageDailyPM2.5)
> summary(Model2)
Call:
lm(formula = LifeExpect2017 ~ AverageDailyPM2.5)
 
Residuals:
     Min       1Q   Median       3Q      Max 
-17.1094  -1.7516   0.0592   1.7208  18.4604 
 
Coefficients:
                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)        81.6278     0.2479  329.23   <2e-16 ***
AverageDailyPM2.5  -0.4615     0.0267  -17.29   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 
Residual standard error: 2.837 on 3042 degrees of freedom
  (98 observations deleted due to missingness)
Multiple R-squared:  0.08944,   Adjusted R-squared:  0.08914 
F-statistic: 298.8 on 1 and 3042 DF,  p-value: < 2.2e-16

9.) For credit: For the PM2.5 model, what is the R-square value for the model for #8 and how is this value related to the correlation test Pearson r value?

Homework Answers

Answer #1

Solution:

We are given the summary output of a simple linear regression model for LifeExpect2017 vs. AverageDailyPM2.5 and we have to determine the R square value and how does it related to pearson correlation r value.

From the summary output, we see that the R square value is 0.08944, this means that 8.94% of total vaariation of response variable is esxplained by the independent variable.

The R square value is also define as the square of correlation coeffiecient i.e

R Square = (correlation coeficient )2   

or R2   = r2

or

or

=> r = 0.2989

Hence, the value of pearson correlation is 0.2989 for the model.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
3.) Now, you are going to run the multivariable linear regression model you just created. For...
3.) Now, you are going to run the multivariable linear regression model you just created. For credit: Provide your model command and summary command below along with all the output for your model summary. Model1 <- lm(LifeExpect2017~HouseholdIncome + Diabetic + FoodInsecure + Uninsured + DrugOverdoseMortalityRate ) > summary(Model1) Call: lm(formula = LifeExpect2017 ~ HouseholdIncome + Diabetic + FoodInsecure + Uninsured + DrugOverdoseMortalityRate) Residuals: Min 1Q Median 3Q Max -5.4550 -0.8559 0.0309 0.8038 7.1801 Coefficients: Estimate Std. Error t value Pr(>|t|)...
3.) Now, you are going to run the multivariable linear regression model you just created. For...
3.) Now, you are going to run the multivariable linear regression model you just created. For credit: Provide your model command and summary command below along with all the output for your model summary. Model1 <- lm(LifeExpect2017~HouseholdIncome + Diabetic + FoodInsecure + Uninsured + DrugOverdoseMortalityRate ) > summary(Model1) Call: lm(formula = LifeExpect2017 ~ HouseholdIncome + Diabetic + FoodInsecure + Uninsured + DrugOverdoseMortalityRate) Residuals: Min 1Q Median 3Q Max -5.4550 -0.8559 0.0309 0.8038 7.1801 Coefficients: Estimate Std. Error t value Pr(>|t|)...
Can you give me a simple interpretation of this output? Call: lm(formula = NOCRF ~ Mktrf...
Can you give me a simple interpretation of this output? Call: lm(formula = NOCRF ~ Mktrf + HML + SMB + SMB2) Residuals:      Min       1Q   Median       3Q      Max -10.1560 -0.6880 -0.0254 0.6660 21.9700 Coefficients:             Estimate Std. Error t value Pr(>|t|)    (Intercept) -0.01163    0.02800 -0.415    0.678    Mktrf        1.25614    0.02389 53.540 <2e-16 *** HML          2.01719    0.04238 47.602   <2e-16 *** SMB         -0.05150    0.04769 -1.080    0.280    SMB2         0.03180    0.03545   0.897    0.372 --- Signif. codes: 0 ‘***’ 0.001...
Consider the following regression run in R, which uses engine size in liters, horsepower, weight, and...
Consider the following regression run in R, which uses engine size in liters, horsepower, weight, and domestic vs foreign manufacturer to predict mileage: ------------------------------------------------------------------------------------------------------ > summary(lm(highwaympg~displacement+hp+weight+domestic)) Call: lm(formula = highwaympg ~ displacement + hp + weight + domestic) Residuals:     Min      1Q  Median      3Q     Max -6.9530 -1.6997 -0.1708 1.6452 11.4028 Coefficients:               Estimate Std. Error t value Pr(>|t|)    (Intercept) 53.849794   2.090657 25.757 < 2e-16 *** displacement 1.460873   0.748837   1.951   0.0543 . hp           -0.009802   0.011356 -0.863   0.3904    weight       -0.008700   0.001094 -7.951 6.23e-12 *** domestic     -0.939918   0.762175 -1.233   0.2208    ---...
> muncy = lm(hit_distance~launch_speed, data=muncy) > summary(muncy) Call: lm(formula = hit_distance ~ launch_speed, data = muncy)...
> muncy = lm(hit_distance~launch_speed, data=muncy) > summary(muncy) Call: lm(formula = hit_distance ~ launch_speed, data = muncy) Residuals:     Min      1Q Median      3Q     Max -258.24 -105.23   23.29 116.06 174.73 Coefficients:               Estimate Std. Error t value Pr(>|t|)    (Intercept) -240.8429    36.6769 -6.567 1.46e-10 *** launch_speed    4.8800     0.4022 12.134 < 2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 122.4 on 438 degrees of freedom Multiple R-squared: 0.2516, Adjusted R-squared: 0.2499 F-statistic:...
4.-Interpret the following regression model Call: lm(formula = log(Sale.Price) ~ Lot.Size + Square.Feet + Num.Baths +...
4.-Interpret the following regression model Call: lm(formula = log(Sale.Price) ~ Lot.Size + Square.Feet + Num.Baths + dis_coast + API.2011 + dis_fwy + dis_down + Pool, data = Training) Residuals: Min 1Q Median 3Q Max -2.17695 -0.23519 -0.00112 0.26471 1.02810 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 9.630e+00 2.017e-01 47.756 < 2e-16 *** Lot.Size -2.107e-06 3.161e-07 -6.666 4.78e-11 *** Square.Feet 2.026e-04 3.021e-05 6.705 3.71e-11 *** Num.Baths 6.406e-02 2.629e-02 2.437 0.015031 * dis_coast -1.827e-05 6.881e-06 -2.655 0.008077 ** API.2011 3.459e-03 2.356e-04...
IV. Your friend mentions that pre-test measures was taken and wants to take that information into...
IV. Your friend mentions that pre-test measures was taken and wants to take that information into account. You suggest using the pre-test value as a covariate to see what effect does it have on the response. First you fit a simple linear regression of diastolic on pre-diastolic. Call: lm(formula = diastolic ~ prediastolic, data = a) Residuals:     Min      1Q Median      3Q     Max -11.268 -4.627   1.101   3.652 10.644 Coefficients:              Estimate Std. Error t value Pr(>|t|)    (Intercept)   30.7307     9.9041   3.103...
Marketing date on sales is presented for youtube. data are the advertising budget in thousands of...
Marketing date on sales is presented for youtube. data are the advertising budget in thousands of dollars along with the sales. The experiment has been repeated 200 times with different budgets and the observed sales have been recorded. The simple linear regression model was fitted: ## ## Call: ## lm(formula = sales ~ youtube, data = marketing) ## ## Residuals: ## Min 1Q Median 3Q Max ## -10.06 -2.35 -0.23 2.48 8.65 ## ## Coefficients: ## Estimate Std. Error t...
Residuals:     Min      1Q Median      3Q     Max -6249.5 -382.9 -139.3    25.6 31164.7 Coefficients:         &nbs
Residuals:     Min      1Q Median      3Q     Max -6249.5 -382.9 -139.3    25.6 31164.7 Coefficients:               Estimate Std. Error t value Pr(>|t|)    (Intercept) 1.311e+02 2.219e+02   0.591   0.5550    debt         1.283e-01 3.288e-01   0.390   0.6966    sales        2.942e-01 1.366e-01   2.154   0.0321 * income       1.546e+01 2.697e+00   5.730 2.42e-08 *** assets      -2.390e-05 4.839e-03 -0.005   0.9961    seo          2.973e+02 2.627e+02   1.132   0.2587    --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 2019 on 303 degrees of freedom Multiple R-squared: 0.258,   Adjusted...
Using the following data taking out of R (summary): Call: lm(formula = dys_detect ~ fin_loss, data...
Using the following data taking out of R (summary): Call: lm(formula = dys_detect ~ fin_loss, data = Lab5, na.action = na.exclude) Residuals: Min 1Q Median 3Q Max -582.66 -274.75 13.53 273.92 589.06 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 385.362 77.360 4.981 8.72e-07 *** fin_loss 3.248 1.523 2.133 0.0334 * --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 316.6 on 498 degrees of freedom Multiple R-squared: 0.009052,   Adjusted R-squared:...