Question

Suppose the distribution of personal daily water usage in California is normally distributed with a mean...

Suppose the distribution of personal daily water usage in California is normally distributed with a mean of 18 gallons and a variance of 36 gallons.

a. The percentage of the population which uses more than 18 gallons is closest to which of the following?

b. Because of a perpetual water shortage in California, the governor wants to give a tax rebate to the 20 percent of the population who use the least amount of water. The maximum water limit for a person to qualify for a tax rebate should be set closest to which of the following?

Homework Answers

Answer #1

Normal distribution: P(X < A) = P(Z < (A - mean)/standard deviation)

Mean = 18 gallons

Variance = 36 gallons^2

Standard deviation = = 6 gallons

a. Since 18 is the mean, percentage of the population which uses more than 18 gallons is closest to 50%

b. Let W be the maximum water limit for a person to qualify for a tax rebate.

P(X < W) = 0.20

P(Z < (W - 18)/6) = 0.20

Take the value of Z corresponding to 0.20 from standard normal distribution table.

(W - 18)/6 = -0.84

W = 12.96 gallons

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT