Question

Suppose we know that a random variable X has a population mean µ = 100 with...

Suppose we know that a random variable X has a population mean µ = 100 with a standard deviation σ = 30. What are the following probabilities?

a. The probability that X > 102 when n = 1296.

b. The probability that X > 102 when n = 900.

c. The probability that X > 102 when n = 36.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose we have the following paired observations of variables X and Y: X         Y 18        40...
Suppose we have the following paired observations of variables X and Y: X         Y 18        40 14        30 20        20 22        20             19        10             27        0 Calculate the values of the sample covariance and sample correlation between X and Y. Using this information, how would you characterize the relationship between X and Y?             (12 points) Suppose X follows a normal distribution with mean µ = 50 and standard deviation σ = 5. (10 points) What is the...
If X is a normal random variable that has a mean of µ = 20 and...
If X is a normal random variable that has a mean of µ = 20 and a standard deviation σ = 2, (a) the standardized value of X=16 is _________. (b) What is the probability that X is less than or equal to 16? __________ (c) What is the probability that X is greater than 16? __________ (d) What is the probability that X is equal to 16?________
1. Suppose a random sample of 100 elements is selected from a non-normally distributed population with...
1. Suppose a random sample of 100 elements is selected from a non-normally distributed population with a mean of µ = 30 and a standard deviation of σ = 8. a. What is the expected value of ?̅? b. What is the standard error of the mean ??̅? c. What is the sampling distribution of ?̅? Describe its properties. d. If we select a random sample of size n = 100, what is the probability that ?̅will fall within ±...
Suppose we know that the population standard deviation for wages (σ) is $15. A random sample...
Suppose we know that the population standard deviation for wages (σ) is $15. A random sample of n = 900 results in a sample mean wage of $50. (10 points) Provide 95% confidence interval estimate of µ. Interpret the result. What is the value of the margin of error? Provide 90% confidence interval estimate of µ. What is the value of the margin of error? Provide 99% confidence interval estimate of µ. What is the value of the margin of...
Suppose that we will take a random sample of size n from a population having mean...
Suppose that we will take a random sample of size n from a population having mean µ and standard deviation σ. For each of the following situations, find the mean, variance, and standard deviation of the sampling distribution of the sample mean  : (a) µ = 20, σ = 2, n = 41 (Round your answers of "σ" and "σ2" to 4 decimal places.) µ σ2 σ (b) µ = 502, σ = .7, n = 132 (Round your answers of...
Suppose that we will take a random sample of size n from a population having mean...
Suppose that we will take a random sample of size n from a population having mean µ and standard deviation σ. For each of the following situations, find the mean, variance, and standard deviation of the sampling distribution of the sample mean : (a) µ = 18, σ = 2, n = 22 (Round your answers of "σ " and "σ 2" to 4 decimal places.) (b) µ = 494, σ = .3, n = 125 (Round your answers of...
A random sample is selected from a population with mean μ = 100 and standard deviation...
A random sample is selected from a population with mean μ = 100 and standard deviation σ = 10. Determine the mean and standard deviation of the x sampling distribution for each of the following sample sizes. (Round the answers to three decimal places.) (a) n = 8 μ = σ = (b) n = 14 μ = σ = (c) n = 34 μ = σ = (d) n = 55 μ = σ = (f) n = 110...
A normal population has a mean of µ = 100. A sample of n = 36...
A normal population has a mean of µ = 100. A sample of n = 36 is selected from the population, and a treatment is administered to the sample. After treatment, the sample mean is computed to be M = 106. Assuming that the population standard deviation is σ = 12, use the data to test whether or not the treatment has a significant effect. Use a one tailed test. Hypothesis:                                        Zcrit = z test calculation:                                                                  Conclusion:
Suppose we know that examination scores have a population standard deviation of σ = 25. A...
Suppose we know that examination scores have a population standard deviation of σ = 25. A random sample of n = 400 students is taken and the average examination score in that sample is 75. Find a 95% and 99% confidence interval estimate of the population mean µ.
A random sample of size 36 is taken from a population with mean µ = 17...
A random sample of size 36 is taken from a population with mean µ = 17 and standard deviation σ = 4. The probability that the sample mean is greater than 18 is ________. a. 0.8413 b. 0.0668 c. 0.1587 d. 0.9332