Assume the printer cartridges in average can print 12,000 pages with 800 pages as its standard deviation (µ= 12000, σ = 800), and it is a bell-shaped distribution for the number of pages (X) it can print before running of of ink.(X is a random variable, isn't it?)
Using Emprical Rules to answer:
What is the chance that your cartridger can print more than 13,600 pages (it means that you are very very lucky to have a great cartridger)? That means in Math: Prob(X > 13,600) or in short: P(X > 13,600) = ?
(ex., if the answer is 6.5%, write only 0.065, ignore the % sign).
Get Answers For Free
Most questions answered within 1 hours.