Question

A treatment is administered to a sample selected from a population with a mean of μ=40...

A treatment is administered to a sample selected from a population with a mean of μ=40 and a variance of σ2=36. After treatment, the sample mean is M=45. Based on this information, calculate Cohen’s d and state the effect size.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A sample of students is selected from a population with µ = 50. After a treatment...
A sample of students is selected from a population with µ = 50. After a treatment is administered to the individuals in the sample, the mean is found to be M = 55 and the variance is s2 = 64. If the sample has n = 16 scores, then conduct a hypothesis test to evaluate the significance of the treatment effect. Use a two-tailed test with α = .05. What are the Hypotheses? What is the df? What is the...
A random sample is selected from a normal population with a mean of μ=50 and a...
A random sample is selected from a normal population with a mean of μ=50 and a standard deviation of σ=12. After a treatment is administered to the individuals in the sample, the sample mean is found to be M=55. a. If the sample consists of n=16 scores, is the sample mean sufficient to conclude that the treatment has a significant effect? Use a two-tailed test with α =0.05. b. If the sample consists of n=36 scores, is the sample mean...
A random sample is selected form a normal population with a mean of μ = 40...
A random sample is selected form a normal population with a mean of μ = 40 and a standard deviation of σ = 10. After a treatment is administered to the individuals in the sample, the sample mean is found to be M = 46. a. How large a sample is necessary for this sample mean to be statistically significant? (Assume a two-tailed test with α = 0.05) b. If the sample mean were M = 43, what sample size...
A sample is selected from a population with mean score of µ = 50. After a...
A sample is selected from a population with mean score of µ = 50. After a treatment is administered to the individuals in the sample, the mean is found to be M = 55 and the variance is s2 = 64. A. Assume that the sample has n = 4 scores. Conduct a hypothesis test to evaluate the significance of the treatment effect and calculate Cohen’s d to measure the size of the treatment effect. Use a two-tailed test with...
A sample is randomly selected from a population with a mean of μ = 50, and...
A sample is randomly selected from a population with a mean of μ = 50, and a treatment is administered to the individuals in the sample. After treatment, the sample is found to have a mean of M = 56 with a standard deviation of s = 8. If there are n = 4 individuals in the sample, are the data sufficient to reject Ho and conclude that the treatment has a significant effect using a two-tailed test with =...
A sample is selected from a population with µ = 50. After treatment is administered, we...
A sample is selected from a population with µ = 50. After treatment is administered, we find top enclose x = 55 and sigma2 = 64. a. Conduct a hypothesis test to evaluate the significance of the treatment effect if n = 4. Use a two-tailed test with α = .05. If it is significant, how large is the effect (Cohen’s d)? b. Keeping all else equal, re-evaluate the significance if the sample had n = 16 participants. If it...
A random sample is selected from a normal population with a mean of μ = 20...
A random sample is selected from a normal population with a mean of μ = 20 and a standard deviation of σ =5 10. After a treatment is administered to the individuals in the sample, the sample mean is found to be M = 25. If the sample consists of n = 25 scores, is the sample mean sufficient to conclude that the treatment has a significant effect? Use a two-tailed test with alpha = .05.
A sample of n=9 individuals is selected from a population with a mean of μ=10. A...
A sample of n=9 individuals is selected from a population with a mean of μ=10. A researcher suspects that after the individuals have gone through a specific type of treatment, their performances on a standardized examination will be different from the general population. After the treatment, the sample has a M=13 and s2=9. 1. Using symbols, state the hypothesis for a two-tailed test. 2. Calculate the t statistic and place this on a standardized normal distribution. 3. With a two-tail...
A sample is selected from a population with µ = 62. After a treatment is administered...
A sample is selected from a population with µ = 62. After a treatment is administered to the individuals in the sample, the mean is found to be M = 68 and the standard deviation is s = 12. A. Assume the sample has n = 9 scores and compute a single sample t-test and the estimated Cohen's d effect size.  Based on your computed t test value, can you reject H0 witha two-tailed test α = .05? Write the appropriate...
A random sample is selected from a normal popula-tion with a mean of μ = 40...
A random sample is selected from a normal popula-tion with a mean of μ = 40 and a standard deviation of σ = 10. After a treatment is administered to the individuals in the sample, the sample mean is found to be M = 46. How large a sample is necessary for this sample mean to be statistically significant? Assume a two-tailed test with alpha = .05.