Question

Suppose the waiting time at a certain checkout counter is bimodal. With probability 0.95, the waiting...

Suppose the waiting time at a certain checkout counter is bimodal. With probability 0.95, the waiting time follows an exponential distribution with a mean waiting time of five minutes. With probability 0.05, the waiting time equals 30 minutes. a) Compute the mean waiting time at the checkout counter. b) Compute the variance of the waiting time at the checkout counter. c) Compute the probability that an individual customer waits longer than 5 1/2 minutes at the checkout counter. d) Using the statistical software R, sample n individuals from the bimodal distribution described above. For N=10,000 iterations, compute the average waiting time for n=5, n=15, n=50, n=100 individuals and plot a histogram of the sampling distribution for the mean waiting time. e) How large a sample do you need for the sampling distribution of the mean waiting time to approximate a normal distribution?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose the waiting time at a certain checkout counter is bimodal. With probability 0.95, the waiting...
Suppose the waiting time at a certain checkout counter is bimodal. With probability 0.95, the waiting time follows an exponential distribution with a mean waiting time of five minutes. With probability 0.05, the waiting time equals 30 minutes. a) Compute the mean waiting time at the checkout counter. b) Compute the variance of the waiting time at the checkout counter. c) Compute the probability that an individual customer waits longer than 5 1/2 minutes at the checkout counter. d) Using...
Suppose the waiting time at a certain checkout counter is bimodal. With probability 0.95, the waiting...
Suppose the waiting time at a certain checkout counter is bimodal. With probability 0.95, the waiting time follows an exponential distribution with a mean waiting time of five minutes. With probability 0.05, the waiting time equals 30 minutes.    a) Compute the mean waiting time at the checkout counter. b) Compute the variance of the waiting time at the checkout counter. c) Compute the probability that an individual customer waits longer than 5 1/2 minutes at the checkout counter. d) Using...
The waiting time at a certain checkout counter follows an exponential distribution with a mean waiting...
The waiting time at a certain checkout counter follows an exponential distribution with a mean waiting time of five minutes. a) Compute the probability that an individual customer waits longer than 5 1/2 minutes at the checkout counter. b) Compute the exact probability that the average checkout time for 5 individuals is greater than 5 ½ minutes. c) Compute the exact probability that the average checkout time for 15 individuals is greater than 5 ½ minutes. d) Apply the Central...
Suppose the height of individuals in a population follow a normal distribution with a mean (μ)...
Suppose the height of individuals in a population follow a normal distribution with a mean (μ) of 66 inches and a standard deviation (σ) of 4 inches. a) Using the statistical software R, sample n individuals from the distribution described above. For N=10,000 iterations, compute the average height for n=5, n=15, n=50, n=100 individuals and plot a histogram of the sampling distribution of the Z score (?̅−??/√? ) b) Using the statistical software R, sample n individuals from the distribution...
CCN and ActMedia provided a television channel targeted to individuals waiting in supermarket checkout lines. The...
CCN and ActMedia provided a television channel targeted to individuals waiting in supermarket checkout lines. The channel showed news, short features, and advertisements. The length of the program was based on the assumption that the population mean time a shopper stands in a supermarket checkout line is 8 minutes. A sample of actual waiting times will be used to test this assumption and determine whether actual mean waiting time differs from this standard. A sample of 100 shoppers showed a...
The amount of time that a customer spends waiting at an airport check-in counter (X) is...
The amount of time that a customer spends waiting at an airport check-in counter (X) is a random variable with mean 8.2 minutes and standard deviation 2.5 minutes. If a random sample of n = 30 customers were observed, then what is the probability that the sample average waiting time exceeds 9 minutes? Show your work.
A customer spending waiting time at a place check-in counter is a random variable with mean...
A customer spending waiting time at a place check-in counter is a random variable with mean 8.2 minutes and standard deviation 1.5 minutes. Suppose that a random sample of n = 49 customers is observed. Find the probability that the average time waiting in line for these customers is: (a) Less than 9.3 minutes (b) Between 5 and 10 minutes (c) Less than 7.5 minutes
The amount of time that a customer spends waiting at an airport check-in counter is a...
The amount of time that a customer spends waiting at an airport check-in counter is a random variable with mean 8.1 minutes and standard deviation 1.6 minutes. Suppose that a random sample of n=50 customers is observed. Find the probability that the average time waiting in line for these customers is (a) Less than 10 minutes (b) Between 5 and 10 minutes (c) Less than 6 minutes Round your answers to four decimal places (e.g. 0.9876).
Suppose your friend Joanna is running for class president. The proportion of individuals in a population...
Suppose your friend Joanna is running for class president. The proportion of individuals in a population of students who will vote for Joanna on election day is 60%. You plan to conduct a poll of size n and report X, the number of individuals in your poll who plan to vote for Joanna. You also plan to compute ?̂=??, the proportion of individuals in your poll who plan to vote for Joanna. a) Explain why X is a binomial random...
The waiting time until a customer is served at a fast food restaurant during lunch hours...
The waiting time until a customer is served at a fast food restaurant during lunch hours has a skewed distribution with a mean of 2.4 minutes and a standard deviation of 0.4 minute. Suppose that a random sample of 44 waiting times will be taken. Compute the probability that the mean waiting time for the sample will be longer than 2.5 minutes. Answer: (Round to 4 decimal places.)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT