Question

Dr Susan Benner is an industrial Psychologist. She is currently studying stress among executives of internet...

Dr Susan Benner is an industrial Psychologist. She is currently studying stress among executives of internet companies. She has developed a questionnaire that she believes measures stress. A score above 80 indicates stress at a dangerous level. A random sample of 15 executives revealed the following stress level scores.

94 78 83 90 78 99 97 90
97 90 93 94 100 75 84

a. Find the mean stress level for this sample. What is the point estimate of the population mean?

The sample mean of all the 15 executives equated to (89.4667) 89.47. The point of estimate of the population mean is 80 - 89.4667 = 9.4667.

b. Construct a 95% confidence interval for the population mean.

95% confidence interval is between 84.99 and 93.94, found by 89.4667±1.76 (8.08/(sqrt)15)

c. According to Dr Benner's test, is it reasonable to conclude that the mean stress level of internet executives is 80? Explain.

It is perfectly reasonable to conclude that a score above 80% is indicative of a dangerous stress level. It also should be noted that the lower stress level scores are still above the 80 thresholds.

(Instructor's Comments)

The point of estimate of the population mean is 80 - 89.4667 = 9.4667. Are you sure? Is 89.467 the point estimate?

Check the t-score value again. Explain how you obtained the value of 1.76? Correct it and then revise the limits. Check your conclusion as well.

Please attach your excel spreadsheet to support the results.

(STUDENT NOTES)

I have completed this assignment but didn't complete it correctly. If someone can assist me in understanding what i did wrong USING EXCEL (NOT MINITAB) that  would be appreciated!!

Homework Answers

Answer #1

Here you use the point estimate of population mean as the difference between the sample mean and population mean i e 80 - 89.4667 = 9.4667. Which is completely wrong because from the Infrential statistics, we know that the sample mean is the only point estimate of population mean so the point estimate of population mean will be 89.4667.

And mistake you done is with t score, we have total 15 observation so degree of freedom is 14. And t at 0.05 with 14 degree of freedom is 2.145. Which is the value from two tailed but you have taken value from one tailed table for constructing the confidence limits which is wrong.

So 95% confidence interval is , found by 89.4667±2.145×(8.08/(sqrt)15 =84.99, 93.94

According to Dr Benner's test, it is not reasonable to conclude that the mean stress level of internet executives is 80 because the value 80 is not contained in confidence interval

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A health psychologist knew that corporate executives in general have an average score of 80 with...
A health psychologist knew that corporate executives in general have an average score of 80 with a standard deviation of 12 on a stress inventory and that the scores are normally distributed. In order to learn whether corporate executives who exercise regularly have lower stress scores, the psychologist measured the stress of 20 exercising executives and found them to have a mean score of 72. Is this significant at the .05 level? SD=13.28, SS=41.22 A) What is the appropriate test...
A psychologist is studying the self image of smokers, which she measures by the self-image (SI)...
A psychologist is studying the self image of smokers, which she measures by the self-image (SI) score from a personality inventory. She would like to estimate the mean SI score, μ, for the population of all smokers. She plans to take a random sample of SI scores for smokers and estimate μ via this sample. Assuming that the standard deviation of SI scores for the population of all smokers is 80, what is the minimum sample size needed for the...
A community psychologist selects a sample of 16 local police officers to test whether their physical...
A community psychologist selects a sample of 16 local police officers to test whether their physical endurance is better than the median score of 74. She measures their physical endurance on a 100-point physical endurance rating scale. Performance Scores 65 82 79 91 92 85 94 96 72 61 81 88 56 80 97 87 Based on the data given above, compute the one-sample sign test at a 0.05 level of significance. x =
A geriatric research project has been tracking the health and cognitive functions of the elderly population...
A geriatric research project has been tracking the health and cognitive functions of the elderly population in Arizona. The table below shows the memory test scores from 16 elderly residents, tested first when they were 65 years old and again when they were 75 years old. The researcher wants to know if there is a significant decline in memory functions based on this sample. The alpha level was set at α = .05 for the hypothesis test. Memory score Subject...
In a cognitive psychology experiment, the researcher is interested in whether encoding condition has an effect...
In a cognitive psychology experiment, the researcher is interested in whether encoding condition has an effect on memory for a list of words. She recruits 16 subjects to participate in the experiment. Each subject comes to the lab twice to be tested in two different encoding conditions and their memory performance scores are listed below. The researcher would like to leave the hypothesis non-directional without predicting which encoding condition would lead to better memory, and she sets the significance level...
The data are not actual data, but are modeled after data collected by Trautwein and Ammerman...
The data are not actual data, but are modeled after data collected by Trautwein and Ammerman (2013) for a study on the effects of cochlear implants (CI) on the language, speech, and perception skills of 32 deaf children: 16 subjects with at least one cochlear implant (CI) and 16 subjects (with hearing loss) without an implant. (CI subjects were implanted at 13 or 14 months of age. So, no subjects had CIs at the time of the first data collection.)...
In a study of academic procrastination, it was determined that for a random sample of 18...
In a study of academic procrastination, it was determined that for a random sample of 18 undergrad students at a mid-size public university, the mean time spent studying for the final exam in an intro statistics course was 7.74 hours with a standard deviation of 3.40 hours. What is the point estimate of the mean final exam study time for all undergrad students? In a study of academic procrastination, it was determined that for a random sample of 18 undergrad...
In a July 2001 research note, the U.S. Department of Transportation reported the results of the...
In a July 2001 research note, the U.S. Department of Transportation reported the results of the National Occupant Protection Use Survey. One focus of the survey was to determine the level of cell phone use by drivers while they are driving a motor passenger vehicle. Data collected by observers at randomly selected intersection across the country revealed that in a sample of 1165 drivers, 35 were using their cell phone. (a) Check and verify the two conditions for a 98%...
1. Find the area under the standard normal curve (round to four decimal places) a. To...
1. Find the area under the standard normal curve (round to four decimal places) a. To the left of  z=1.65 b. To the right of z = 0.54 c. Between z = -2.05 and z = 1.05 2. Find the z-score that has an area of 0.23 to its right. 3. The average height of a certain group of children is 49 inches with a standard deviation of 3 inches. If the heights are normally distributed, find the probability that a...
Calculate the mean, median, mode, variance (population) and standard deviation (sample) for the following test grades:...
Calculate the mean, median, mode, variance (population) and standard deviation (sample) for the following test grades: 65, 60, 67, 71, 75, 80, 65 Use this information to answer questions #1-4. Question 1 (0.5 points) Saved The mode is: Question 1 options: 65 60 There is no modal category 75 71 Question 2 (0.5 points) Saved The median is: Question 2 options: 67 65 80 66 None of the above Question 3 (0.5 points) What is the approximate population variance for...