Question

Dep.= Mileage Indep.= Length SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard...

Dep.= Mileage Indep.= Length
SUMMARY OUTPUT
Regression Statistics
Multiple R
R Square
Adjusted R Square
Standard Error
Observations 7.0000
ANOVA
Significance
df SS MS F F
Regression 6.1135
Residual
Total 169.4286
Standard
Coefficients Error t Stat P-value Lower 95% Upper 95%
Intercept 80.0094
Length -0.3047
SE CI CI PI PI
Predicted Predicted Lower Upper Lower Upper
x0 Value Value 95% 95% 95% 95%
175.0000 2.3108
210.0000 2.9335

Is there a relationship between a car's gas MILEAGE (in miles/gallon) and its LENGTH (in inches)? Use the excel output above to answer the following question.

What is the 90% confidence interval for the mean gas mileage of cars that are 210 inches in length (without units)?

a.

(10.3226, 21.7222)

b.

None of the answers is correct

c.

(11.6926, 20.3522)

d.

(10.1114, 21.9334)

e.

(8.4804, 23.5644)

Homework Answers

Answer #1

There is No relationship between the cars milage in gallons OR in milea and it's length.because the mileage and the length are very different parameters to each other they are not related to the each other. Therefore there is No relationship between them.

The 90% confidence interval is : None of the Answer is correct .

Because in our output above the lower confidence interval and upper confidence interval is 95% so here we can not assume the 90% confidence interval.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Dep.= Mileage Indep.= Cylinders SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard...
Dep.= Mileage Indep.= Cylinders SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard Error Observations 7.0000 ANOVA Significance df SS MS F F Regression 12.4926 Residual Total 169.4286 Standard Coefficients Error t Stat P-value Lower 95% Upper 95% Intercept 38.7857 Cylinders -2.7500 SE CI CI PI PI Predicted Predicted Lower Upper Lower Upper x0 Value Value 95% 95% 95% 95% 4.0000 1.9507 6.0000 1.1763 Is there a relationship between a car's gas MILEAGE (in miles/gallon) and its...
SUMMARY OUTPUT Regression Statistics Multiple R 0.84508179 R Square 0.714163232 Adjusted R Square 0.704942691 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.84508179 R Square 0.714163232 Adjusted R Square 0.704942691 Standard Error 9.187149383 Observations 33 ANOVA df SS MS F Significance F Regression 1 6537.363661 6537.363661 77.4535073 6.17395E-10 Residual 31 2616.515127 84.40371378 Total 32 9153.878788 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 61.07492285 3.406335763 17.92980114 6.41286E-18 54.12765526 68.02219044 54.12765526 68.02219044 Time (Y) -0.038369095 0.004359744 -8.800767426 6.17395E-10 -0.047260852 -0.029477338 -0.047260852 -0.029477338 Using your highlighted cells, what is the equation...
SUMMARY OUTPUT Regression Statistics Multiple R 0.231960777 R Square 0.053805802 Adjusted R Square 0.034093423 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.231960777 R Square 0.053805802 Adjusted R Square 0.034093423 Standard Error 5272.980333 Observations 50 ANOVA df SS MS F Significance F Regression 1 75893113.09 75893113.09 2.729543781 0.105035125 Residual 48 1334607437 27804321.59 Total 49 1410500550 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 99.0% Upper 99.0% Intercept 6396.894057 3281.342486 1.949474669 0.057094351 -200.6871963 12994.47531 -2404.335972 15198.12409 HSRANK 64.68225855 39.15075519 1.6521331 0.105035125 -14.03561063 143.4001277 -40.32805468 169.6925718 a. According to your estimate, what is the predicted...
SUMMARY OUTPUT Regression Statistics Multiple R 0.993709623 R Square 0.987458816 Adjusted R Square 0.987378251 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.993709623 R Square 0.987458816 Adjusted R Square 0.987378251 Standard Error 514.2440271 Observations 471 ANOVA df SS MS F Significance F Regression 3 9723795745 3241265248 12256.7707 0 Residual 467 123496711.4 264446.9194 Total 470 9847292456 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept -267.1127974 42.01832073 -6.357055513 4.8988E-10 -349.68118 -184.54441 -349.68118 -184.54441 Fuel cost (000,000) 0.449917223 0.098292092 4.577349137 6.0451E-06 0.25676768 0.64306676 0.25676768 0.64306676 Salary (000,000) -0.327915884 0.188252958 -1.741889678 0.08218614 -0.6978436...
SUMMARY OUTPUT Regression Statistics Multiple R 0.909785963 R Square 0.827710499 Adjusted R Square 0.826591736 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.909785963 R Square 0.827710499 Adjusted R Square 0.826591736 Standard Error 7.177298036 Observations 156 ANOVA df SS MS F Significance F Regression 1 38112.05194 38112.05194 739.8443652 1.09619E-60 Residual 154 7933.095493 51.5136071 Total 155 46045.14744 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 8.67422449 2.447697434 3.543830365 0.000522385 3.838827439 13.50962154 3.838827439 13.50962154 X Variable 1 0.801382837 0.029462517 27.20008024 1.09619E-60 0.743179986 0.859585688 0.743179986 0.859585688 (d) How much of the variation in...
SUMMARY OUTPUT Regression Statistics Multiple R 0.884651238 R Square 0.782607814 Adjusted R Square 0.601447658 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.884651238 R Square 0.782607814 Adjusted R Square 0.601447658 Standard Error 25.32612538 Observations 12 ANOVA df SS MS F Significance F Regression 5 13854.44091 2770.888181 4.319977601 0.051673038 Residual 6 3848.475761 641.4126268 Total 11 17702.91667 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept -53.17436031 42.95203957 -1.237993838 0.261960445 -158.274215 51.92549434 -158.274215 51.92549434 Advertising ($1000s) 2.050813091 0.763960482 2.684449181 0.036320193 0.181469133 3.92015705 0.181469133 3.92015705 t (quarters) -4.047065728 2.779316427 -1.456137088 0.19560701 -10.84780803 2.753676575...
SUMMARY OUTPUT Regression Statistics Multiple R 0.440902923 R Square 0.194395388 Adjusted R Square 0.165100675 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.440902923 R Square 0.194395388 Adjusted R Square 0.165100675 Standard Error 0.428710255 Observations 115 ANOVA df SS MS F Significance F Regression 4 4.878479035 1.219619759 6.635852231 8.02761E-05 Residual 110 20.21717314 0.183792483 Total 114 25.09565217 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 0.321875686 0.323939655 0.99362854 0.322584465 -0.320096675 0.963848047 -0.320096675 0.963848047 Gender -0.307211858 0.082630734 -3.717888514 0.000317832 -0.470966578 -0.143457137 -0.470966578 -0.143457137 Age 0.000724105 0.091134233 0.007945479 0.993674883 -0.179882553 0.181330763 -0.179882553 0.181330763...
SUMMARY OUTPUT Regression Statistics Multiple R 0.870402 R Square 0.7576 Adjusted R Square 0.68488 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.870402 R Square 0.7576 Adjusted R Square 0.68488 Standard Error 1816.52 Observations 27 ANOVA df SS MS F Significance F Regression 6 2.06E+08 34376848 10.41804 2.81E-05 Residual 20 65994862 3299743 Total 26 2.72E+08 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept -4695.4 12622.97 -0.37197 0.713825 -31026.5 21635.66 -31026.5 21635.66 AGE 161.7028 126.5655 1.277621 0.216015 -102.308 425.7137 -102.308 425.7137 MILAGE -0.03441 0.023186 -1.4842 0.153346 -0.08278 0.013953 -0.08278 0.013953...
Regression Statistics Multiple R 0.3641 R Square 0.1325 Adjusted R Square 0.1176 Standard Error 0.0834 Observations...
Regression Statistics Multiple R 0.3641 R Square 0.1325 Adjusted R Square 0.1176 Standard Error 0.0834 Observations 60 ANOVA df SS MS F Significance F Regression 1 0.0617 0.0617 8.8622 0.0042 Residual 58 0.4038 0.0070 Total 59 0.4655 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept -0.0144 0.0110 -1.3062 0.1966 -0.0364 0.0077 X Variable 1 0.8554 0.2874 2.9769 0.0042 0.2802 1.4307 How do you interpret the above table?
Using the attached regression output, answer the following: SUMMARY OUTPUT Regression Statistics Multiple R 0.972971 R...
Using the attached regression output, answer the following: SUMMARY OUTPUT Regression Statistics Multiple R 0.972971 R Square 0.946673 Adjusted R Square 0.944355 Standard Error 76.07265 Observations 49 ANOVA df SS MS F Significance F Regression 2 4725757 2362878 408.3046 5.24E-30 Residual 46 266204.2 5787.049 Total 48 4991961 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept -0.46627 14.97924 -0.03113 0.975302 -30.6179 29.68537 X1 0.09548 0.084947 1.123997 0.266846 -0.07551 0.26647 X2 0.896042 0.205319 4.364141 7.16E-05 0.482756 1.309328 a. What...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT