Question

Suppose X1, . . . , Xn are a random sample from a N(0, σ^2) distribution....

  1. Suppose X1, . . . , Xn are a random sample from a N(0, σ^2) distribution. Find the MLE of σ^2

    and show that it is an unbiased efficient estimator.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that X1,..., Xn form a random sample from the uniform distribution on the interval [0,θ],...
Suppose that X1,..., Xn form a random sample from the uniform distribution on the interval [0,θ], where the value of the parameter θ is unknown (θ>0). (1)What is the maximum likelihood estimator of θ? (2)Is this estimator unbiased? (Indeed, show that it underestimates the parameter.)
Suppose that X is Poisson, with unknown mean λ, and let X1, ..., Xn be a...
Suppose that X is Poisson, with unknown mean λ, and let X1, ..., Xn be a random sample from X. a. Find the CRLB for the variance of estimators based on X1, ..., Xn. ̂̅̂ b. Verify that ? = X is an unbiased estimator for λ, and then show that ? is an efficient estimator for λ.
Let X1, ..., Xn be i.i.d. N(µ, σ^2 ) We know that S^ 2 is an...
Let X1, ..., Xn be i.i.d. N(µ, σ^2 ) We know that S^ 2 is an unbiased estimator for σ^ 2 . Show that S^2 X is a consistent estimator for σ^ 2
Suppose that (X1, · · · , Xn) is a random sample from uniform distribution U(0,...
Suppose that (X1, · · · , Xn) is a random sample from uniform distribution U(0, θ). (a) Prove that T(X1, · · · , Xn) = X(n) is minimal sufficient for θ. (X(n) is the largest order statistic, i.e., X(n) = max{X1, · · · , Xn}.) (b) In addition, we assume θ ≥ 1. Find a minimal sufficient statistic for θ and justify your answer.
If (x1, . . . , xn) is a sample from an N(μ0, σ2) distribution, where...
If (x1, . . . , xn) is a sample from an N(μ0, σ2) distribution, where σ2 > 0 is unknown and μ0 is known a.determine the MLE of σ2. b. show that the mle of σ2 is asymptotically normal
Let X1, X2, ..., Xn be a random sample from a distribution with probability density function...
Let X1, X2, ..., Xn be a random sample from a distribution with probability density function f(x; θ) = (θ 4/6)x 3 e −θx if 0 < x < ∞ and 0 otherwise where θ > 0 . a. Justify the claim that Y = X1 + X2 + ... + Xn is a complete sufficient statistic for θ. b. Compute E(1/Y ) and find the function of Y which is the unique minimum variance unbiased estimator of θ. b.  Compute...
Let X1,...,Xn be a random sample from a normal distribution where the variance is known and...
Let X1,...,Xn be a random sample from a normal distribution where the variance is known and the mean is unknown.   Find the minimum variance unbiased estimator of the mean. Justify all your steps.
X1, X2,...Xn are iid random variables from a U(0,b) distribution. Which estimator is an unbiased estimator...
X1, X2,...Xn are iid random variables from a U(0,b) distribution. Which estimator is an unbiased estimator for b? 2 X bar n X bar n 1/n (X1squared + X2squared +....Xnsquared) 1/n2(X1squared + X2squared +....Xnsquared)
Let X1, X2, ..., Xn be a random sample (of size n) from U(0,θ). Let Yn...
Let X1, X2, ..., Xn be a random sample (of size n) from U(0,θ). Let Yn be the maximum of X1, X2, ..., Xn. (a) Give the pdf of Yn. (b) Find the mean of Yn. (c) One estimator of θ that has been proposed is Yn. You may note from your answer to part (b) that Yn is a biased estimator of θ. However, cYn is unbiased for some constant c. Determine c. (d) Find the variance of cYn,...
Let X1, X2, · · · , Xn be a random sample from the distribution, f(x;...
Let X1, X2, · · · , Xn be a random sample from the distribution, f(x; θ) = (θ + 1)x^ −θ−2 , x > 1, θ > 0. Find the maximum likelihood estimator of θ based on a random sample of size n above
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT