From given data ,
= X / n = 3.97 / 6 = 0.6617
S = sqrt [ X2 - n 2 / ( n - 1) ]
= sqrt [ (3.3615 - 6 * 0.66172 ) / 5 ]
= 0.3833
98% Confidence Interval
X̅ ± t(α/2, n-1) S/√(n)
t(α/2, n-1) = t(0.02 /2, 6- 1 ) = 3.365
0.6617 ± t(0.02/2, 6 -1) * 0.3833/√(6)
Lower Limit = 0.6617 - t(0.02/2, 6 -1) 0.3833/√(6)
Lower Limit = 0.135
Upper Limit = 0.6617 + t(0.02/2, 6 -1) 0.3833/√(6)
Upper Limit = 1.188
98% Confidence interval is ( 0.135 , 1.188
)
Get Answers For Free
Most questions answered within 1 hours.