Question

A subway train on the Red Line arrives every 12 minutes during rush hour. We are...

A subway train on the Red Line arrives every 12 minutes during rush hour. We are interested in the length of time a commuter must wait for a train to arrive. The time follows a unifrom distribution.

A) give the distribution of X
B) graph the probability distribution
C) F(x) = ____ , where ___ < x ___
D) μ =
E) σ =
F) find the probability that a commuter waits less than 1 minutes
G) find the probability that a commuter waits between four and five minutes
H) State "70% of all commuters wait more than how long for the train?" in a probability question. Find the probability that the commuter waits more than ___ minutes. Draw the pictire and find the probability.

Homework Answers

Answer #1

a)

here for uniform distribution parameter a =0 and b=12

pdf of X:

f(x)=1/(b-a) = 1/12    for 0 <x<12

b)

c)

F(x) =x/12 where 0<X <12

d)

mean μ=(a+b)/2 = 6

e)

standard deviation σ=(b-a)/√12= 3.4641

f)

P(X<1)=(1-0)/12=0.0833

g)

P(4<X<5)=(5-4)/12=0.0833

h)

Find the probability that the commuter waits more than 3.6 minutes

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A subway train on the Red Line arrives every 8 minutes during rush hour. We are...
A subway train on the Red Line arrives every 8 minutes during rush hour. We are interested in the length of time a commuter must wait for a train to arrive. The time follows a uniform distribution. Find the probability that the commuter waits between two and three minutes. (Enter your answer as a fraction.) State "60% of commuters wait more than how long for the train?" in a probability question. (Enter your answer to one decimal place.) Find the...
The amount of time, in minutes, that a person must wait for a bus is uniformly...
The amount of time, in minutes, that a person must wait for a bus is uniformly distributed between zero and 20 minutes, inclusive. What is the probability that a person waits fewer than 13.5 minutes? On the average, how long must a person wait? Find the mean, μ, and the standard deviation, σ. Find the 40th percentile. Draw a graph.
A bus comes by every 9 minutes. The times from when a person arives at the...
A bus comes by every 9 minutes. The times from when a person arives at the busstop until the bus arrives follows a Uniform distribution from 0 to 9 minutes. A person arrives at the bus stop at a randomly selected time. Round to 4 decimal places where possible. a. The mean of this distribution is... b. The standard deviation is... c. The probability that the person will wait more than 3 minutes is... d. Suppose that the person has...
Problem 1. The commuter trains on the Red Line for the Regional Transit Authority (RTA) in...
Problem 1. The commuter trains on the Red Line for the Regional Transit Authority (RTA) in Cleveland, OH, have a waiting time during peak rush hour periods of twelve (12)minutes. (a)What is the random variable? (b)Find the height of this uniform distribution. (c)Find the probability of waiting between four and five minutes. (d)Find the probability of waiting between three and eight minutes. (e)Find the probability of waiting five minutes exactly.
A bus comes by every 11 minutes. The times from when a person arives at the...
A bus comes by every 11 minutes. The times from when a person arives at the busstop until the bus arrives follows a Uniform distribution from 0 to 11 minutes. A person arrives at the bus stop at a randomly selected time. Round to 4 decimal places where possible. The mean of this distribution is 5.50 Correct The standard deviation is 3.1754 Correct The probability that the person will wait more than 4 minutes is 0.6364 Correct Suppose that the...
The amount of time, in minutes, that a person must wait for a taxi is uniformly...
The amount of time, in minutes, that a person must wait for a taxi is uniformly distributed between 1 and 30 minutes, inclusive. 1.Find the probability density function, f(x). 2.Find the mean. 3.Find the standard deviation. 4.What is the probability that a person waits fewer than 5 minutes. 5.What is the probability that a person waits more than 21 minutes. 6.What is the probability that a person waits exactly 5 minutes. 7.What is the probability that a person waits between...
Arrival Rate = 1/50 = 0.02 calls hour. Service Rate= 1 hour (travel time) + 1.5...
Arrival Rate = 1/50 = 0.02 calls hour. Service Rate= 1 hour (travel time) + 1.5 hour (repair time) =2.5 hours With m = 1/ 2.5 = 0.4 hours per customers ** PLEASE SHOW HOW TO DO EQUATION ** OEI is satisfied that one service technician can handle the 10 existing customers. Use a waiting line model to determine the following information: (a) probability that no customers are in the system, (b) average number of customers in the waiting line,...
assume that the amount of time (x), in minutes that a person must wait for a...
assume that the amount of time (x), in minutes that a person must wait for a bus is uniformly distributed between 0 & 20 min. a) find the mathematical expression for the probability distribution and draw a diagram. assume that the waiting time is randomly selected from the above interval b) find the probability that a eprson wait elss than 15 min. c) find the probability that a person waits between 5-10 min. d) find the probability the waiting time...
The time (in minutes) until the next bus departs a major bus depot follows a distribution...
The time (in minutes) until the next bus departs a major bus depot follows a distribution with f(x) = 1 20 where x goes from 25 to 45 minutes. Part 1: Find the probability that the time is at most 35 minutes. (Enter your answer as a fraction.)Sketch and label a graph of the distribution. Shade the area of interest. Write the answer in a probability statement. (Enter exact numbers as integers, fractions, or decimals.) The probability of a waiting...
1)Today, the waves are crashing onto the beach every 5.6 seconds. The times from when a...
1)Today, the waves are crashing onto the beach every 5.6 seconds. The times from when a person arrives at the shoreline until a crashing wave is observed follows a Uniform distribution from 0 to 5.6 seconds. Round to 4 decimal places where possible. a. The mean of this distribution is b. The standard deviation is   c. The probability that wave will crash onto the beach exactly 0.4 seconds after the person arrives is P(x = 0.4) =   d. The probability...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT