minutes?
minutes?
15 minutes?
Norml distribution: P(X < A) = P(Z < (A-mean)/standard deviation)
Mean = 6.5 minutes
Standard deviation = 4
a. P(X > 8.5) = 1 - P(X < 8.5)
= 1 - P(Z < (8.5 - 6.5)/4)
= 1 - P(Z < 0.5)
= 1 - 0.6915
= 0.3085
b. P(X < 5) = P(Z < (5 - 6.5)/4)
= P(Z < -0.375)
= 0.3538
c. P(5.5 < X < 15) = P(X < 15) - P(X < 5.5)
= P(Z < (15 - 6.5)/4) - P(Z < (5.5 - 6.5)/4)
= P(Z < 2.125) - P(Z < -0.25)
= 0.9832 - 0.4013
= 0.5819
d. Let 25% of calls be longer than M miniutes
P(X > M) = 0.25
P(X < M) = 1 - 0.25 = 0.75
P(Z < (M - 6.5)/4) = 0.67
M = 9.18
Get Answers For Free
Most questions answered within 1 hours.