Using the 95% CI given on the prior problem (repeated here);
Variable |
n |
Sample Mean |
Std. Err. |
L. Limit |
U. Limit |
pH_level |
90 |
4.577889 |
not given |
4.5181427 |
4.6376348 |
What are the upper and lower bounds if we had constructed a 90% confidence interval, using the same sample data?
a. |
(4.518 ; 4.638) |
|
b. |
(4.528 ; 4.628) |
|
c. |
(4.559 ; 5.717) |
|
d. |
(4.507 ; 4.649) |
|
e. |
(4.757 ; 4.899) |
95% confidence limit = ( 4.5181427, 4.6376348 )
Sample mean = 4.577889
We need to construct the limit for 90% confidence interval
Now, obtain margin of error
margin of error = Upper limit - mean = 4.6376348 - 4.577889
margin of error = 0.0597458
z_c for 90% CI = 1.645
z_c for 95% CI = 1.96
This is the only difference in margin of error
New margin of error = ( margin of error /1.645)*1.96
New margin of error = ( 0.0597458 / 1.645 )*1.96
New margin of error = 0.0711864
95% confidence interval = ( mean - new margin of error , mean + new margin of error )
95% confidence interval = ( 4.577889 - 0.0711864, 4.577889 + 0.0711864 )
95% confidence interval = ( 4.507, 4.649 )
Get Answers For Free
Most questions answered within 1 hours.