Find the following probability for the standard normal random variable z.
a. |
P(zgreater than>1.981.98) |
e. |
P(zgreater than or equals≥0) |
b. |
P(zless than<negative 1.64−1.64) |
f. |
P(negative 2.72−2.72less than or equals≤zless than or equals≤1.531.53) |
c. |
P(0.170.17less than or equals≤zless than or equals≤2.122.12) |
g. |
P(zgreater than or equals≥negative 2.63−2.63) |
d. |
P(negative 1.25−1.25less than or equals≤zless than<negative 0.65−0.65) |
h. |
P(zless than<2.632.63) |
a)
P(Z > 1.98) = 1 - P(Z < 1.98)
= 1 - 0.9761(From Z table)
= 0.0239
b)
P(Z < -1.64) = 1 - P(Z < 1.64)
= 1 - 0.9495 (From Z table)
= 0.0505
c)
0.17 <= Z <= 2.12) = P(Z <= 2.12) - P(Z <= 0.17)
= 0.9830 - 0.5675 (From Z table)
= 0.4155
d)
P(-1.25 <= Z <= -0.65) = P(Z <= -0.65) - P(Z <= -1.25)
= ( 1 - P(Z < 0.65) ) - ( 1 - P(Z < 1.25) )
= ( 1 - 0.7422) - ( 1 - 0.8944) (From Z table)
= 0.1522
e)
P(Z >= 0) = 1 - P(Z < 0)
= 1 - 0.5 (From Z table)
= 0.5
f)
P(-2.72 <= Z <= 1.53) = P(Z < 1.53) - P(Z < -2.72)
P(Z < 1.53) - ( 1 - P(Z < 2.72) )
= 0.9370 - ( 1 - 0.9967 ) (From Z table)
= 0.9337
g)
P(Z >= - 2.63) = P(Z < 2.63)
= 0.9957(From Z table)
h)
P(Z < 2.63) = 0.9957 (From Z table)
Get Answers For Free
Most questions answered within 1 hours.