Question

The following show the results of regression: Housing Sold = b0 + b1 permit +b2 price...

The following show the results of regression:

Housing Sold = b0 + b1 permit +b2 price + b3 employment

Dependent Variable: SOLD ,             
Method: Least Squares              
Date: 03/15/20   Time: 14:59              
            
Included observations: 108              
              
Variable      Coefficient Std. Error t-Statistic    Prob.
              
C -61520.76   167763.0            -0.366712      0.7146
PERMIT    15.98282                .280962   12.47721     0.0000
PRICE      -0.360566   0.345253      -1.044354 0.2987
EMP 33.57386    15.67645   2.141674 0.0346
              
R-squared   0.634646         Mean dependent var       481456.3
Adjusted R-squared   0.624106        S.D. dependent var       62292.29
S.E. of regression   38191.50          Akaike info criterion      23.97495
Sum squared resid   1.52E+11      Schwarz criterion          24.07429
Log likelihood   -1290.647       Hannan-Quinn criter.       24.01523
F-statistic   60.21835                        Durbin-Watson stat      0.553692
Prob(F-statistic)   0.000000          

Choose the correct answer

Multiple Choice

  • The R squared of this regression is not relaible.

  • The estimated coefficients are biased.

  • The esstimated coefficients are unbiased but inefficient.

  • options a and c are correct.

Homework Answers

Answer #1

From the output of regression model the regression equation is

Y=-61520.76+15.9828 permit -0.3606price +33.5739 employment.

And the value of R square=.6347

We can say that 63.47%variation in dependent variable can be explained by independent varible which is very less so it is not reliable also from the property of estimated coefficient\beta they are unbiased but for this model they are not efficient because they do not fit this model in accurate way eesulting large gap between observed and fitted values.

So option a and c are correct

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Regression model Using gretl this has been estimated with the output below. Model 1: OLS, using...
Regression model Using gretl this has been estimated with the output below. Model 1: OLS, using observations 1-57 coefficient std. error t-ratio p-value const -0.6167 0.2360 -2.6130 0.0118 X1 -1.9892 0.0409 -48.6760 0.0000 X2 0.3739 0.0408 9.1686 0.0000 X3 1.3447 0.0368 36.5730 0.0000 X4 -0.4012 0.0320 -12.5220 0.0000 X5 -0.0478 0.1276 -0.3746 0.7095 Mean dependent var -6.2529 S.D. dependent var 4.2151 Sum squared resid 6.8318 S.E. of regression 0.366 R-squared 0.99313 Adjusted R-squared 0.99246 F(5, 51) 1475.3 P-value(F) 0 Log-likelihood...
7) Consider the following regression model Yi = β0 + β1X1i + β2X2i + β3X3i + ...
7) Consider the following regression model Yi = β0 + β1X1i + β2X2i + β3X3i + β4X4i + β5X5i + ui This model has been estimated by OLS. The Gretl output is below. Model 1: OLS, using observations 1-52 coefficient std. error t-ratio p-value const -0.5186 0.8624 -0.6013 0.5506 X1 0.1497 0.4125 0.3630 0.7182 X2 -0.2710 0.1714 -1.5808 0.1208 X3 0.1809 0.6028 0.3001 0.7654 X4 0.4574 0.2729 1.6757 0.1006 X5 2.4438 0.1781 13.7200 0.0000 Mean dependent var 1.3617 S.D. dependent...
Q1. Model 1: OLS, using observations 1-832 Dependent variable: VALUE Coefficient Std. Error t-ratio p-value const...
Q1. Model 1: OLS, using observations 1-832 Dependent variable: VALUE Coefficient Std. Error t-ratio p-value const 597.865 7.72837 77.36 <0.0001 *** LOT 30.8658 4.64595 6.644 <0.0001 *** Mean dependent var 610.3780 S.D. dependent var 221.7390 Sum squared resid 38795690 S.E. of regression 216.1985 R-squared 0.050492 Adjusted R-squared 0.049348 F(1, 830) 44.13736 P-value(F) 5.54e-11 Log-likelihood −5652.552 Akaike criterion 11309.10 Schwarz criterion 11318.55 Hannan-Quinn 11312.73 2-. For the estimated regression in activity #1 above, provide appropriate interpretations for the estimated intercept and...
The regression model Yi = β0 + β1X1i + β2X2i + β3X3i + β4X4i + ui...
The regression model Yi = β0 + β1X1i + β2X2i + β3X3i + β4X4i + ui has been estimated using Gretl. The output is below. Model 1: OLS, using observations 1-50 coefficient std. error t-ratio p-value const -0.6789 0.9808 -0.6921 0.4924 X1 0.8482 0.1972 4.3005 0.0001 X2 1.8291 0.4608 3.9696 0.0003 X3 -0.1283 0.7869 -0.1630 0.8712 X4 0.4590 0.5500 0.8345 0.4084 Mean dependent var 4.2211 S.D. dependent var 2.3778 Sum squared resid 152.79 S.E. of regression 1.8426 R-squared 0 Adjusted...
Foreign Direct Investment and Economic Growth Economic theory suggests that foreign direct investment affect the economic...
Foreign Direct Investment and Economic Growth Economic theory suggests that foreign direct investment affect the economic growth (the growth of the Gross DomesticProduct (GDP)) in developing countries. The objective of this project is to carry out a simple linear regression analysisto examine this theory. Your independent and dependent variables are the growth of the foreign direct investment andthe economic growth (the growth of the Gross Domestic Product (GDP)) respectively. Required Tasks: State the regression model and determine the least squares...