Question

The amount of time, in minutes, that a person must wait for a bus is uniformly...

  1. The amount of time, in minutes, that a person must wait for a bus is uniformly distributed between zero and 20 minutes, inclusive.
  1. What is the probability that a person waits fewer than 13.5 minutes?
  2. On the average, how long must a person wait? Find the mean, μ, and the standard deviation, σ.

Find the 40th percentile. Draw a graph.

Homework Answers

Answer #1

Let X denotes the time that a person must wait for the bus.

X~U(0,20)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The amount of time, in minutes, that a person must wait for a bus is uniformly...
The amount of time, in minutes, that a person must wait for a bus is uniformly distributed between 0 and 15 minutes, inclusive. 1. What is the average time a person must wait for a bus? 2. What is the probability that a person waits 12.5 minutes or less?
The amount of time, in minutes, that a person must wait for a taxi is uniformly...
The amount of time, in minutes, that a person must wait for a taxi is uniformly distributed between 1 and 30 minutes, inclusive. 1.Find the probability density function, f(x). 2.Find the mean. 3.Find the standard deviation. 4.What is the probability that a person waits fewer than 5 minutes. 5.What is the probability that a person waits more than 21 minutes. 6.What is the probability that a person waits exactly 5 minutes. 7.What is the probability that a person waits between...
The amount of time, in minutes, that a person must wait for a taxi is uniformly...
The amount of time, in minutes, that a person must wait for a taxi is uniformly distributed between 1 and 30 minutes, inclusive. 1.Find P(x<10 | x<22). 2.Find the 60th percentile.
assume that the amount of time (x), in minutes that a person must wait for a...
assume that the amount of time (x), in minutes that a person must wait for a bus is uniformly distributed between 0 & 20 min. a) find the mathematical expression for the probability distribution and draw a diagram. assume that the waiting time is randomly selected from the above interval b) find the probability that a eprson wait elss than 15 min. c) find the probability that a person waits between 5-10 min. d) find the probability the waiting time...
Suppose the wait time for bus is uniformly distributed from 0 to 20 minutes. If you...
Suppose the wait time for bus is uniformly distributed from 0 to 20 minutes. If you look at the average wait times for 50 person samples, what type of distribution would the sample means follow approximately? What would be the mean of the sample means? What would be the standard deviation of the sample means?
Suppose the mean wait time for a bus is 30 minutes and the standard deviation is...
Suppose the mean wait time for a bus is 30 minutes and the standard deviation is 10 minutes. Take a sample of size n = 100. Find the 85th percentile for the sum of the 100 wait times.
A bus comes by every 9 minutes. The times from when a person arives at the...
A bus comes by every 9 minutes. The times from when a person arives at the busstop until the bus arrives follows a Uniform distribution from 0 to 9 minutes. A person arrives at the bus stop at a randomly selected time. Round to 4 decimal places where possible. a. The mean of this distribution is... b. The standard deviation is... c. The probability that the person will wait more than 3 minutes is... d. Suppose that the person has...
A subway train on the Red Line arrives every 12 minutes during rush hour. We are...
A subway train on the Red Line arrives every 12 minutes during rush hour. We are interested in the length of time a commuter must wait for a train to arrive. The time follows a unifrom distribution. A) give the distribution of X B) graph the probability distribution C) F(x) = ____ , where ___ < x ___ D) μ = E) σ = F) find the probability that a commuter waits less than 1 minutes G) find the probability...
A bus comes by every 11 minutes. The times from when a person arives at the...
A bus comes by every 11 minutes. The times from when a person arives at the busstop until the bus arrives follows a Uniform distribution from 0 to 11 minutes. A person arrives at the bus stop at a randomly selected time. Round to 4 decimal places where possible. The mean of this distribution is 5.50 Correct The standard deviation is 3.1754 Correct The probability that the person will wait more than 4 minutes is 0.6364 Correct Suppose that the...
1. Assume the waiting time at the BMV is uniformly distributed from 10 to 60 minutes,...
1. Assume the waiting time at the BMV is uniformly distributed from 10 to 60 minutes, i.e. X ∼ U ( 10 , 60 )X ∼ U ( 10 , 60 ) What is the expected time waited (mean), and standard deviation for the above uniform variable?   1B) What is the probability that a person at the BMV waits longer than 45 minutes? 1C) What is the probability that an individual waits between 15 and 20 minutes, OR 35 and...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT