Question

Assume that the population proportion is 0.46. Compute the standard error of the proportion, σp, for...

Assume that the population proportion is 0.46. Compute the standard error of the proportion, σp, for sample sizes of 500,000; 1,000,000; 5,000,000; 10,000,000; and 100,000,000. (Round your answers to five decimal places.) sample size of 500,000 sample size of 1,000,000 sample size of 5,000,000 sample size of 10,000,000 sample size of 100,000,000 What can you say about the size of the standard error of the sample proportion as the sample size is increased? The standard error of the sample proportion, σp, and becomes extremely as the sample size becomes huge.

Homework Answers

Answer #1

The standard error of the sample proportion,, and becomes extremely as the sample size becomes huge.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Assume that the population proportion is 0.48. Compute the standard error of the proportion, σp, for...
Assume that the population proportion is 0.48. Compute the standard error of the proportion, σp, for sample sizes of 500,000; 1,000,000; 5,000,000; 10,000,000; and 100,000,000. (Round your answers to five decimal places.) sample size of 500,000sample size of 1,000,000sample size of 5,000,000sample size of 10,000,000sample size of 100,000,000 What can you say about the size of the standard error of the sample proportion as the sample size is increased? The standard error of the sample proportion, σp,   ---Select--- increases decreases...
Impact of Sample Size on Accuracy Compute the standard error for sample proportions from a population...
Impact of Sample Size on Accuracy Compute the standard error for sample proportions from a population with proportion p = 0.35 for sample sizes of n = 20, n = 250, and n = 1100.
For a population with a proportion equal to 0.33 calculate the standard error of the proportion...
For a population with a proportion equal to 0.33 calculate the standard error of the proportion for the following sample sizes. ​a) 35 ​b) 70 ​c) 105 ​ ​a) σ=_ ​(Round to four decimal places as​ needed.)
The population proportion is 0.38. What is the probability that a sample proportion will be within...
The population proportion is 0.38. What is the probability that a sample proportion will be within ±0.04 of the population proportion for each of the following sample sizes? (Round your answers to 4 decimal places.) (a) n = 100 (b) n = 200 (c) n = 500 (d) n = 1,000 (e) What is the advantage of a larger sample size? We can guarantee p will be within ±0.04 of the population proportion p. There is a higher probability p...
For a population with a proportion equal to 0.27​, calculate the standard error of the proportion...
For a population with a proportion equal to 0.27​, calculate the standard error of the proportion for the following sample sizes. ​a) 45 ​b) 90 ​c) 135
Chapter 6, Section 1-D, Exercise 008 Impact of Sample Size on Accuracy Compute the standard error...
Chapter 6, Section 1-D, Exercise 008 Impact of Sample Size on Accuracy Compute the standard error for sample proportions from a population with proportion p = 0.55 for sample sizes n=40. n=150 and n=1200. Round your answers to three decimal places. Sample size            SE n=40    _________ n=150                _________ n=120    _________
consider random samples of size 50 from a population with proportion 0.25 whats the standard error...
consider random samples of size 50 from a population with proportion 0.25 whats the standard error of the distrubution of sample proportions ? round to three decimal places
Consider random samples of size 82 drawn from population A with proportion 0.45 and random samples...
Consider random samples of size 82 drawn from population A with proportion 0.45 and random samples of size 64 drawn from population B with proportion 0.11 . (a) Find the standard error of the distribution of differences in sample proportions, p^A-p^B. Round your answer for the standard error to three decimal places. standard error = Enter your answer in accordance to the question statement       (b) Are the sample sizes large enough for the Central Limit Theorem to apply?...
Consider random samples of size 58 drawn from population A with proportion 0.78 and random samples...
Consider random samples of size 58 drawn from population A with proportion 0.78 and random samples of size 76 drawn from population B with proportion 0.68 . (a) Find the standard error of the distribution of differences in sample proportions, p^A-p^B. Round your answer for the standard error to three decimal places. standard error = Enter your answer in accordance to the question statement (b) Are the sample sizes large enough for the Central Limit Theorem to apply? Yes No
In the EAI sampling problem, the population mean is 51900 and the population standard deviation is...
In the EAI sampling problem, the population mean is 51900 and the population standard deviation is 4000. When the sample size is n=30 , there is a 0.5034 probability of obtaining a sample mean within +/- 500 of the population mean. Use z-table. a. What is the probability that the sample mean is within 500 of the population mean if a sample of size 60 is used (to 4 decimals)? b. What is the probability that the sample mean is...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT