Question

A binary message m, where m is equal either to 0 or to 1, is sent...

A binary message m, where m is equal either to 0 or to 1, is sent over an information channel. Because of noise in the channel, the message received is X, where X = m + E, and E is a random variable representing the channel noise. Assume that if X ≤ 0.5 then the receiver concludes that m = 0 and that if X > 0.5 then the receiver concludes that m = 1. Assume that E ∼ N(0, 0.24).

If the true message is m = 0, what is the probability of an error, that is, what is the probability that the receiver concludes that m = 1?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A binary message m, where m is equal either to 0 or to 1, is sent...
A binary message m, where m is equal either to 0 or to 1, is sent over an information channel. Assume that if m = 0, the value s = −1.5 is sent, and if m = 1, the value s = 1.5 is sent. The value received is X, where X = s + E, and E ∼ N(0, 0.66). If X ≤ 0.5, then the receiver concludes that m = 0, and if X > 0.5, then the...
A binary message m, where m is equal either to 0 or to 1, is sent...
A binary message m, where m is equal either to 0 or to 1, is sent over an information channel. Assume that if m = 0, the value s = −1.5 is sent, and if m = 1, the value s = 1.5 is sent. The value received is X, where X = s + E, and E ∼ N(0, 0.66). If X ≤ 0.5, then the receiver concludes that m = 0, and if X > 0.5, then the...
1. A transmitted message bit B is either 1 or 0, each with equal likelihood. The...
1. A transmitted message bit B is either 1 or 0, each with equal likelihood. The bit is captured by N independent receivers; each receiver has a probability p of receiving the wrong bit value (e.g. receiving a 1 when a 0 was sent). Write the conditional probability that the message bit is 1, if all N receivers receive a 1. Write your answer as a function of p.
In a binary communication system, 1’s are sent twice as frequently as 0’s. Whichever symbol is...
In a binary communication system, 1’s are sent twice as frequently as 0’s. Whichever symbol is sent, the receiver makes the correct decision as to which it was only 3/4 of the time. Errors in di↵erent symbol transmissions are independent. (a) Suppose that the string of symbols 1001 is transmitted. What is the probability that all symbols in the string are received correctly? (b) Find the probability of an error being incurred as a result of the receiver making the...
In a binary communication channel, 0s and 1s are transmitted with equal probability. The probability that...
In a binary communication channel, 0s and 1s are transmitted with equal probability. The probability that a 0 is correctly received (as a 0) is 0.99. The probability that a 1 is correctly received (as a 1) is 0.90. Suppose we receive a 1, what is the probability that, in fact, a 0 was sent? How to apply bayes rule?
Consider a noisy communication channel, where each bit is flipped with probability p (the probability that...
Consider a noisy communication channel, where each bit is flipped with probability p (the probability that a bit is sent in error is p). Assume that n−1 bits, b1,b2,⋯,b(n−1), are going to be sent on this channel. A parity check bit is added to these bits so that the sum b1+b2+⋯+bn is an even number. This way, the receiver can distinguish occurrence of odd number of errors, that is, if one, three, or any odd number of errors occur, the...
Question 2: For a certain binary channel, the probability that the transmitted ‘0’ was correctively received...
Question 2: For a certain binary channel, the probability that the transmitted ‘0’ was correctively received as ‘0’ is 0.94 and the probability that the transmitted ‘1’ was received as ‘1’ is 0.91. Further, the probability of transmitting ‘0’ is 0.45. If a signal is sent, determine (i) the probability that a ‘0’ was received ; (ii) the probability that a ‘0’ was transmitted given that a ‘0’ was received, and (iii) the probability of an error.
(1) Consider a noisy wireless channel which flips each bit ( 0 becomes 1 or 1...
(1) Consider a noisy wireless channel which flips each bit ( 0 becomes 1 or 1 becomes 0 ) with probability p. To guarantee the information is received reliably, each bit is transmitted m times (called repetition coding). For example, if m = 3 and “0” needs to be sent, you transmit “000” instead of “0”. (1) Consideranoisywirelesschannelwhichflipseachbit(0becomes1or1becomes0)withprobabilityp. To guarantee the information is received reliably, each bit is transmitted m times (called repetition coding). For example, if m = 3...
In this problem, we study a simple noisy communication channel. Suppose that X is a binary...
In this problem, we study a simple noisy communication channel. Suppose that X is a binary signal that takes value −1 and 1 with equal probability. This signal X is sent through a noisy communication channel, and the medium of transmission adds an independent noise term. More precisely, the received signal is Y=X+N, where N is standard normal, indpendendent of X. The decoder receives the value y of Y, and decides whether X was 1 or −1, using the following...
A binary communication channel transmits a sequence of "bits" (0s and 1s). Suppose that for any...
A binary communication channel transmits a sequence of "bits" (0s and 1s). Suppose that for any particular bit transmitted, there is a 15% chance of a transmission error (a 0 becoming a 1 or a 1 becoming a 0). Assume that bit errors occur independently of one another. (Round your answers to four decimal places.) (a) Consider transmitting 1000 bits. What is the approximate probability that at most 165 transmission errors occur? (b) Suppose the same 1000-bit message is sent...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT