Question

Let X be a continuous random variable with probability density function (pdf) ?(?) = ??^3, 0...

Let X be a continuous random variable with probability density function (pdf) ?(?) = ??^3, 0 < ? < 2.

(a) Find the constant c.

(b) Find the cumulative distribution function (CDF) of X.

(c) Find P(X < 0.5), and P(X > 1.0).

(d) Find E(X), Var(X) and E(X5 ).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A continuous random variable X has the following probability density function F(x) = cx^3, 0<x<2 and...
A continuous random variable X has the following probability density function F(x) = cx^3, 0<x<2 and 0 otherwise (a) Find the value c such that f(x) is indeed a density function. (b) Write out the cumulative distribution function of X. (c) P(1 < X < 3) =? (d) Write out the mean and variance of X. (e) Let Y be another continuous random variable such that  when 0 < X < 2, and 0 otherwise. Calculate the mean of Y.
6. A continuous random variable X has probability density function f(x) = 0 if x< 0...
6. A continuous random variable X has probability density function f(x) = 0 if x< 0 x/4 if 0 < or = x< 2 1/2 if 2 < or = x< 3 0 if x> or = 3 (a) Find P(X<1) (b) Find P(X<2.5) (c) Find the cumulative distribution function F(x) = P(X< or = x). Be sure to define the function for all real numbers x. (Hint: The cdf will involve four pieces, depending on an interval/range for x....
2. Let the probability density function (pdf) of random variable X be given by:                           ...
2. Let the probability density function (pdf) of random variable X be given by:                            f(x) = C (2x - x²),                         for 0< x < 2,                         f(x) = 0,                                       otherwise      Find the value of C.                                                                           (5points) Find cumulative probability function F(x)                                       (5points) Find P (0 < X < 1), P (1< X < 2), P (2 < X <3)                                (3points) Find the mean, : , and variance, F².                                                   (6points)
Let the probability density function of the random variable X be f(x) = { e ^2x...
Let the probability density function of the random variable X be f(x) = { e ^2x if x ≤ 0 ;1 /x ^2 if x ≥ 2 ; 0 otherwise} Find the cumulative distribution function (cdf) of X.
A random variable X takes values between -2 and 4 with probability density function (pdf) Sketch...
A random variable X takes values between -2 and 4 with probability density function (pdf) Sketch a graph of the pdf. Construct the cumulative density function (cdf). Using the cdf, find ) Using the pdf, find E(X) Using the pdf, find the variance of X Using either the pdf or the cdf, find the median of X
3. Let X be a continuous random variable with PDF fX(x) = c / x^1/2, 0...
3. Let X be a continuous random variable with PDF fX(x) = c / x^1/2, 0 < x < 1. (a) Find the value of c such that fX(x) is indeed a PDF. Is this PDF bounded? (b) Determine and sketch the graph of the CDF of X. (c) Compute each of the following: (i) P(X > 0.5). (ii) P(X = 0). (ii) The median of X. (ii) The mean of X.
Suppose a random variable X has cumulative distribution function (cdf) F and probability density function (pdf)...
Suppose a random variable X has cumulative distribution function (cdf) F and probability density function (pdf) f. Consider the random variable Y = X?b a for a > 0 and real b. (a) Let G(x) = P(Y x) denote the cdf of Y . What is the relationship between the functions G and F? Explain your answer clearly. (b) Let g(x) denote the pdf of Y . How are the two functions f and g related? Note: Here, Y is...
A continuous random variable X has pdf ?x(?) = (? + 1) ?^2, 0 ≤ ?...
A continuous random variable X has pdf ?x(?) = (? + 1) ?^2, 0 ≤ ? ≤ ? + 1, Where B is the last digit of your registration number (e.g. for FA18-BEE-123, B=3). a) Find the value of a b) Find cumulative distribution function (CDF) of X i.e. ?? (?). c) Find the mean of X d) Find variance of X.
2. Let X be a continuous random variable with pdf given by f(x) = k 6x...
2. Let X be a continuous random variable with pdf given by f(x) = k 6x − x 2 − 8 2 ≤ x ≤ 4; 0 otherwise. (a) Find k. (b) Find P(2.4 < X < 3.1). (c) Determine the cumulative distribution function. (d) Find the expected value of X. (e) Find the variance of X
Let X be a continuous random variable with the following probability density function: f(x) = e^−(x−1)...
Let X be a continuous random variable with the following probability density function: f(x) = e^−(x−1) for x ≥ 1; 0 elsewhere (i) Find P(0.5 < X < 2). (ii) Find the value such that random variable X exceeds it 50% of the time. This value is called the median of the random variable X.