Question

A random sample of n = 100 observations is drawn from a population with mean equal...

A random sample of n = 100 observations is drawn from a population with mean equal to 21 and standard deviation equal to 20, i.e. population mean is 21 and population standard deviation is 20. Complete parts a through d below.

a. What is the probability distribution of ?̅? i.e., Give the mean and standard deviation of the sampling distribution of ?̅ and state whether it is normally distributed or not.

b. Find P ( 18.7 < ?̅ < 23.3 )

c. If standard deviation of population distribution is decreased to 10, would answer in b decrease or increase or not change? Why? (Hint: you don’t necessarily calculate the probability of P ( 18.7 < ?̅ < 23.3 ) to find the answer. Think about how the sampling distribution of ?̅ would change.)

d. If sample size increases to 200, would answer in b decrease or increase or not change? Why? (Hint: you don’t necessarily calculate the probability of P ( 18.7 < ?̅ < 23.3 ) to find the answer. Think about how the sampling distribution of ?̅ would change.)

Homework Answers

Answer #1

Mean od the sampling distribution is 21

Standard deviation of the sampling distribution is

c. If standard deviation decreases then the probability will increase

d. If we increase the sample size to 200 then standard deviation of the sampling distribution will decrease and hence the probability increases

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A random sample of n = 100 observations is drawn from a population with mean equal...
A random sample of n = 100 observations is drawn from a population with mean equal to 21 and standard deviation equal to 20, i.e. population mean is 21 and population standard deviation is 20. Complete parts a through d below. a. What is the probability distribution of ?̅? i.e., Give the mean and standard deviation of the sampling distribution of ?̅ and state whether it is normally distributed or not. b. Find P ( 18.7 < ?̅ < 23.3...
A random sample of n=36 observations is drawn from a population with a mean equal to...
A random sample of n=36 observations is drawn from a population with a mean equal to 60 and a standard deviation equal to 36. a. Find the probability that x? is less than 48 ____ b. Find the probability that x? is greater than 63____ c. Find the probability that x? falls between 48 and 78 ____
A random sample of n = 81 observations is drawn from a population with a mean...
A random sample of n = 81 observations is drawn from a population with a mean equal to 15 and a standard deviation equal to 9 . Complete parts a through g below. a. Give the mean and standard deviation of the? (repeated) sampling distribution x overbar . mu Subscript x overbar equalsnothingsigma Subscript x overbar equalsnothing ?(Type integers or? decimals.) b. Describe the shape of the sampling distribution of x overbar . Does this answer depend on the sample?...
A random sample of n=81 observations is drawn from a population with a mean equal to...
A random sample of n=81 observations is drawn from a population with a mean equal to 57 and a standard deviation equal to 54, find the probability if x is less than 51, x is greater than 66, and if x falls between 51 and 63
Suppose a random sample of n = 25 observations is selected from a population that is...
Suppose a random sample of n = 25 observations is selected from a population that is normally distributed with mean equal to 108 and standard deviation equal to 14. (a) Give the mean and the standard deviation of the sampling distribution of the sample mean x. mean     standard deviation     (b) Find the probability that x exceeds 113. (Round your answer to four decimal places.) (c) Find the probability that the sample mean deviates from the population mean ? = 108...
Suppose a random sample of n = 16 observations is selected from a population that is...
Suppose a random sample of n = 16 observations is selected from a population that is normally distributed with mean equal to 102 and standard deviation equal to 10. a) Give the mean and the standard deviation of the sampling distribution of the sample mean x. mean = standard deviation = b) Find the probability that x exceeds 106. (Round your answer to four decimal places.) c) Find the probability that the sample mean deviates from the population mean μ...
Suppose that we will randomly select a sample of 79 measurements from a population having a...
Suppose that we will randomly select a sample of 79 measurements from a population having a mean equal to 21 and a standard deviation equal to 8. (a) Describe the shape of the sampling distribution of the sample mean . Do we need to make any assumptions about the shape of the population? Why or why not? Normally distributed ; yes , because the sample size is large . (b) Find the mean and the standard deviation of the sampling...
A random sample of size n = 50 is selected from a binomial distribution with population...
A random sample of size n = 50 is selected from a binomial distribution with population proportion p = 0.8. Describe the approximate shape of the sampling distribution of p̂. Calculate the mean and standard deviation (or standard error) of the sampling distribution of p̂. (Round your standard deviation to four decimal places.) mean = standard deviation = Find the probability that the sample proportion p̂ is less than 0.9. (Round your answer to four decimal places.)
A random sample is selected from a population with mean μ = 100 and standard deviation...
A random sample is selected from a population with mean μ = 100 and standard deviation σ = 10. Determine the mean and standard deviation of the x sampling distribution for each of the following sample sizes. (Round the answers to three decimal places.) (a) n = 8 μ = σ = (b) n = 14 μ = σ = (c) n = 34 μ = σ = (d) n = 55 μ = σ = (f) n = 110...
Suppose a random sample of n=36 measurements is selected from a population with mean u=256 and...
Suppose a random sample of n=36 measurements is selected from a population with mean u=256 and variance o^2=144. a. Describe the sampling distribution of the sample mean x bar. (Hint: describe the shape, calculate the mean and the standard deviation of the sampling distribution of x bar. b. What is the probability that the sample mean is greater than 261?