Question

The percentage of impurities per batch in a chemical product is a random variable X with...

  1. The percentage of impurities per batch in a chemical product is a random variable X with density function

    12x2(1−x), 0≤x≤1 f(x) =

0, elsewhere A batch with more than 40% impurities cannot be sold.

  1. (a) What is the distribution of X?

Homework Answers

Answer #1

given that

(1)

a)

we have to find the distribution of X

Now let Y is type 1 beta distribution with parameters and is given by

let   then

(2)

since (1) and (2) have same pdf

Hence X is type 1 beta distribution with parameters with  

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The proportion of impurities per batch in a chemical product is a random variable Y with...
The proportion of impurities per batch in a chemical product is a random variable Y with density function f(y) = 12y2(1 − y), 0 ≤ y ≤ 1, 0, elsewhere . Find the mean and variance of the percentage of impurities in a randomly selected batch of the chemical. E(Y) = ??: . V(Y) =??
The proportion of impurities in certain ore samples is a random variable Y with a density...
The proportion of impurities in certain ore samples is a random variable Y with a density function given by f(y) = 3 2 y2 + y,     0 ≤ y ≤ 1, 0,     elsewhere. The dollar value of such samples is U = 3 − Y/8 . Find the probability density function for U .
For certain ore samples, the proportion Y of impurities per sample is a random variable with...
For certain ore samples, the proportion Y of impurities per sample is a random variable with density function f(y) = 5 2 y4 + y,   0 ≤ y ≤ 1, 0, elsewhere. The dollar value of each sample is W = 8 − 0.8Y. Find the mean and variance of W. (Round your answers to four decimal places.) E(W) = V(W) =
Consider a continuous random variable X with the probability density function f X ( x )...
Consider a continuous random variable X with the probability density function f X ( x ) = |x|/C , – 2 ≤ x ≤ 1, zero elsewhere. a) Find the value of C that makes f X ( x ) a valid probability density function. b) Find the cumulative distribution function of X, F X ( x ).
Let X be a random variable with probability density function given by f(x) = 2(1 −...
Let X be a random variable with probability density function given by f(x) = 2(1 − x), 0 ≤ x ≤ 1,   0, elsewhere. (a) Find the density function of Y = 1 − 2X, and find E[Y ] and Var[Y ] by using the derived density function. (b) Find E[Y ] and Var[Y ] by the properties of the expectation and the varianc
Suppose a random variable X has a mixed distribution of the interval [0,1). X has probability...
Suppose a random variable X has a mixed distribution of the interval [0,1). X has probability 0.5 at x = 0, X has the density function fx(x) = x for 0 < x < 1, and X has no density or probability elsewhere. Find and graph the CDF of X.
Let X be a continuous random variable with the following probability density function: f(x) = e^−(x−1)...
Let X be a continuous random variable with the following probability density function: f(x) = e^−(x−1) for x ≥ 1; 0 elsewhere (i) Find P(0.5 < X < 2). (ii) Find the value such that random variable X exceeds it 50% of the time. This value is called the median of the random variable X.
Probability density function of the continuous random variable X is given by f(x) = ( ce...
Probability density function of the continuous random variable X is given by f(x) = ( ce −1 8 x for x ≥ 0 0 elsewhere (a) Determine the value of the constant c. (b) Find P(X ≤ 36). (c) Determine k such that P(X > k) = e −2 .
X is a continuous random variable with the cumulative distribution function F(x)   = 0               when...
X is a continuous random variable with the cumulative distribution function F(x)   = 0               when x < 0 = x2              when 0 ≤ x ≤ 1 = 1               when x > 1 Compute P(1/4 < X ≤ 1/2) What is f(x), the probability density function of X? Compute E[X]
If the probability density function of a random variable X is ce−5∣x∣ , then (a) Compute...
If the probability density function of a random variable X is ce−5∣x∣ , then (a) Compute the value of c. (b) What is the probability that 2 < X ≤ 3? (c) What is the probability that X > 0? (d) What is the probability that ∣X∣ < 1? (e) What is the cumulative distribution function of X? (f) Compute the density function of X3 . (g) Compute the density function of X2 .
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT