Question

The lifetime of a particular component is normally distributed with a mean of 1000 hours and...

The lifetime of a particular component is normally distributed with a mean of 1000 hours and a standard deviation of 100 hours. What is the 80th percentile of component lifetimes? Question 13 options: 84 1254 1157 1084

Homework Answers

Answer #1

X : lifetime of a particular component

X is normally distributed with a mean of 1000 hours and a standard deviation of 100 hours

Let X80 be the 80th percentile of component lifetimes

Therefore,

P(X X80) = 0.80

Z80 be the Z-score of X80

Z80 = (X80 -mean)/Standard deviation = (X80 - 1000)/100

X80 = 1000+100Z80

P(ZZ80) = P(X X80) = 0.80

From standard normal tables,

P(Z0.84) =0.79950.80

Z80 = 0.84

X80 = 1000+100Z80 =1000+100 x 0.84 = 1000+84 = 1084

X80 = 1084

80th percentile of component lifetimes = 1084

Answer : 1084

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The lifetime of a particular component is normally distributed with a mean of 1000 hours and...
The lifetime of a particular component is normally distributed with a mean of 1000 hours and a standard deviation of 100 hours. Find the probability that a randomly drawn component will last between 800 and 950 hours. Question 12 options: 0.9378 0.2857 0.6687 0.3784
The lifetime of a light bulb in a certain application is normally distributed with mean =...
The lifetime of a light bulb in a certain application is normally distributed with mean = 1000 hours and a standard deviation = 100 hours. A) What is the probability that a lightbulb will last more than 1100 hours? B) Find the 10th percentile of the lifetimes C) What is the probability that the lifetime of a light bulb is between 900 and 1100 hours?
The lifetime of a certain type of battery is normally distributed with a mean of 1000...
The lifetime of a certain type of battery is normally distributed with a mean of 1000 hours and a standard deviation of 100 hours. Find the probability that a randomly selected battery will last between 950 and 1050 hours
The lifetime of a particular brand of lightbulb is a normally-distributed variable with a mean of...
The lifetime of a particular brand of lightbulb is a normally-distributed variable with a mean of 10300 hours and a standard deviation of 320 hours. The longest-working 15% of lightbulbs will work for at least how many hours?
Lifetimes of batteries in a certain application are normally distributed with mean 53 hours and standard...
Lifetimes of batteries in a certain application are normally distributed with mean 53 hours and standard deviation 6 hours. What is the lifetime corresponding to a standard unit of “–1.60”?
The lifetime of a certain type of battery is normally distributed with mean value 13 hours...
The lifetime of a certain type of battery is normally distributed with mean value 13 hours and standard deviation 1 hour. There are nine batteries in a package. What lifetime value is such that the total lifetime of all batteries in a package exceeds that value for only 5% of all packages? (Round your answer to two decimal places.) hours
The lifetime of lightbulbs that are advertised to last for 6000 hours are normally distributed with...
The lifetime of lightbulbs that are advertised to last for 6000 hours are normally distributed with a mean of 6100 hours and a standard deviation of 100 hours. What is the probability that a bulb lasts longer than the advertised figure?
The lifetimes of a certain electronic component are known to be normally distributed with a mean...
The lifetimes of a certain electronic component are known to be normally distributed with a mean of 1,400 hours and a standard deviation of 600 hours. For a random sample of 25 components, find the probability that the sample mean is less than 1300 hours. A 0.2033 B 0.8213 C 0.1487 D 0.5013
A battery for the capsule in a space flight has a lifetime, X, that is normally...
A battery for the capsule in a space flight has a lifetime, X, that is normally distributed with a mean of 100 hours and a standard deviation of 30 hours. (a) What is the distribution of the total lifetime T of three batteries used consecutively, T = X1 + X2 + X3 ,if the lifetimes are independently distributed? (b) What is the probability that three batteries will suffice for a mission of 200 hours? (c) Suppose the length of the...
The life of a machine component is normally distributed with a mean of 5,000 hours and...
The life of a machine component is normally distributed with a mean of 5,000 hours and a standard deviation of 200 hours. Find the probability that a randomly selected component will last: more than 5,100 hours less than 4,850 hours between 4,950 and 5,200 hours
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT