Question

Since we've determined that the Central Limit Theorem applies, let's calculate the probability: Assume that the...

Since we've determined that the Central Limit Theorem applies, let's calculate the probability: Assume that the standardized test scores of a certain group of high school students has an unknown distribution with a mean of 90 percent and a standard deviation of 15 percent. A sample size of n=31 is randomly drawn from a population. Use a calculator to find the probability that the sample mean is between 85 and 92 percent. If needed, round to the nearest hundredth. Provide your answer below:

$\mu_{\overline{x}}=$μx​=​  %

$\sigma_{\overline{x}}=$σx​=​  %

$P\left(85\le\overline{x}\le92\right)=$P(85≤x≤92)=​  

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Given a population with mean μ=100 and variance σ2=81, the Central Limit Theorem applies when the...
Given a population with mean μ=100 and variance σ2=81, the Central Limit Theorem applies when the sample size n≥30. A random sample of size n=30 is obtained. What are the mean, the variance, and the standard deviation of the sampling distribution for the sample mean? Describe the probability distribution of the sample mean and draw the graph of this probability distribution with its mean and standard deviation. What is the probability that x<101.5? What is the probability that x>102? What...
If the Central Limit Theorem applies in a given situation then: ( select all that apply)...
If the Central Limit Theorem applies in a given situation then: ( select all that apply) Group of answer choices A. the standard deviation of all possible means is the standard deviation of the population divided by the square root of the size of the population B. the variance of all possible means is the variance of the population divided by the size of the population C. the mean of all possible means is the mean of the population D....
Apply the Central Limit Theorem for Sample Means A population of values has a normal distribution...
Apply the Central Limit Theorem for Sample Means A population of values has a normal distribution with μ=77 and σ=9.2. You intend to draw a random sample of size n=30. Find the probability that a sample of size n=30n=30 is randomly selected with a mean less than 76.8. P(M < 76.8) = Enter your answers as numbers accurate to 4 decimal places. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are accepted.
Given a population with a mean of μ=105 and a variance of σ2=36​, the central limit...
Given a population with a mean of μ=105 and a variance of σ2=36​, the central limit theorem applies when the sample size is n≥25. A random sample of size n=25 is obtained. a. What are the mean and variance of the sampling distribution for the sample​ means? b. What is the probability that x>107​? c. What is the probability that 104<x<106​? d. What is the probability that x≤105.5​?
The Central Limit Theorem holds. The following table gives pre and post test scores for boys...
The Central Limit Theorem holds. The following table gives pre and post test scores for boys and girls in a drivers ed class. Boys Pre-Test Boys Post Test Girls Pre-Test Girls Post Test 45 63 55 75 57 75 62 88 71 82 66 85 66 90 59 93 62 92 72 70 58 78 69 93 63 94 70 89 60 90 64 74 Try to show the boys pre-test population mean is significantly less than 65. Let =...
Applying the Central Limit Theorem: The amount of contaminants that are allowed in food products is...
Applying the Central Limit Theorem: The amount of contaminants that are allowed in food products is determined by the FDA (Food and Drug Administration). Common contaminants in cow milk include feces, blood, hormones, and antibiotics. Suppose you work for the FDA and are told that the current amount of somatic cells (common name "pus") in 1 cc of cow milk is currently 750,000 (note: this is the actual allowed amount in the US!). You are also told the standard deviation...
The population has mean μ=29 and standard deviation σ=9. This distribution is shown with the black...
The population has mean μ=29 and standard deviation σ=9. This distribution is shown with the black dotted line. We are asked for the mean and standard deviation of the sampling distribution for a sample of size 34. The Central Limit Theorem states that the sample mean of a sample of size n is normally distributed with mean μx¯=μ and σx¯=σn√. In our case, we have μ=29, σ=9, and n=34. So, μx¯=29 and σx¯=934‾‾‾√=1.5 This distribution is shown with the red...
Applying the Central Limit Theorem: The amount of contaminants that are allowed in food products is...
Applying the Central Limit Theorem: The amount of contaminants that are allowed in food products is determined by the FDA (Food and Drug Administration). Common contaminants in cow milk include feces, blood, hormones, and antibiotics. Suppose you work for the FDA and are told that the current amount of somatic cells (common name "pus") in 1 cc of cow milk is currently 750,000 (note: this is the actual allowed amount in the US!). You are also told the standard deviation...
Use the central limit theorem to find the mean and standard error of the mean of...
Use the central limit theorem to find the mean and standard error of the mean of the indicated sampling distribution. Then sketch a graph of the sampling distribution. The per capita consumption of red meat by people in a country in a recent year was normally​ distributed, with a mean of 111 pounds and a standard deviation of 38.7 pounds. Random samples of size 17 are drawn from this population and the mean of each sample is determined. mu Subscript...
1. The Central Limit Theorem for the proportion requires np >= 10 and n(1-p) >= 10,...
1. The Central Limit Theorem for the proportion requires np >= 10 and n(1-p) >= 10, and that the sample was collected using an SRS. If these requirements are met, then the distribution of the sample proportion is approximately normal. If we know that the population proportion is p, what are the mean and standard deviation for the distribution of the sample proportion? Assume you know that n = 1002 and p = .50. Use this information in problems 2-4....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT