Question

A manufacturing process produces steel rods in batches of 2,200. The firm believes that the percent...

A manufacturing process produces steel rods in batches of 2,200. The firm believes that the percent of defective items generated by this process is 4.3%.

a. Calculate the centerline, the upper control limit (UCL), and the lower control limit (LCL) for the p¯p¯ chart. (Round your answers to 3 decimal places.)

centerline-

Upper control limit-

Lower control limit-

b. An engineer inspects the next batch of 2,200 steel rods and finds that 5.5% are defective. Is the manufacturing process under control?

A)Yes, because the sample proportion lies within the control limits.

B)Yes, because the sample proportion lies below the lower control limit.

C)No, because the sample proportion lies between the upper and lower control limits.

D)No, because the sample proportion lies below the lower control limit.

Homework Answers

Answer #1

Dear student,
I am waiting for your feedback. I have given my 100% to solve your queries. If you are satisfied by my given answer. Can you please like it☺
  
Thank You!!!

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A manufacturing process produces steel rods in batches of 1,700. The firm believes that the percent...
A manufacturing process produces steel rods in batches of 1,700. The firm believes that the percent of defective items generated by this process is 5.4%. a. Calculate the centerline, the upper control limit (UCL), and the lower control limit (LCL) for the p⎯⎯ chart. (Round your answers to 3 decimal places.) b. An engineer inspects the next batch of 1,700 steel rods and finds that 6.5% are defective. Is the manufacturing process under control?
Random samples of size n = 200 are taken from a population with p = 0.08....
Random samples of size n = 200 are taken from a population with p = 0.08. a. Calculate the centerline, the upper control limit (UCL), and the lower control limit (LCL) for the p¯chart b. Calculate the centerline, the upper control limit (UCL), and the lower control limit (LCL) for the p¯ chart if samples of 120 are used. c. Discuss the effect of the sample size on the control limits. The control limits have a ___ spread with smaller...
Twelve​ samples, each containing five​ parts, were taken from a process that produces steel rods at...
Twelve​ samples, each containing five​ parts, were taken from a process that produces steel rods at Emmanual​ Kodzi's factory. The length of each rod in the samples was determined. The results were tabulated and sample means and ranges were computed. Refer to Table S6.1 - Factors for computing control chart limits (3 sigma) for this problem. Sample ​Size, n Mean​ Factor, A2 Upper​ Range, D4 Lower​ Range, D3 2 1.880 3.268 0 3 1.023 2.574 0 4 0.729 2.282 0...
Random samples of size n= 400 are taken from a population with p= 0.15. a.Calculate the...
Random samples of size n= 400 are taken from a population with p= 0.15. a.Calculate the centerline, the upper control limit (UCL), and the lower control limit (LCL) for the p chart. b.Suppose six samples of size 400 produced the following sample proportions: 0.06, 0.11, 0.09, 0.08, 0.14, and 0.16. Is the production process under control?
Twenty-five samples of 100 items each were inspected when a process was considered to be operating...
Twenty-five samples of 100 items each were inspected when a process was considered to be operating satisfactorily. In the 25 samples, a total of 185 items were found to be defective. (a) What is an estimate of the proportion defective when the process is in control? (b) What is the standard error of the proportion if samples of size 100 will be used for statistical process control? (Round your answer to four decimal places.) (c) Compute the upper and lower...
A local company makes snack-size bags of potato chips. The company produces batches of 400 snack-size...
A local company makes snack-size bags of potato chips. The company produces batches of 400 snack-size bags using a process designed to fill each bag with an average of 2 ounces of potato chips. However, due to imperfect technology, the actual amount placed in a given bag varies. Assume the population of filling weights is normally distributed with a standard deviation of 0.1 ounce. The company periodically weighs samples of 10 bags to ensure the proper filling process. The last...
The following are quality control data for a manufacturing process at Kensport Chemical Company. The data...
The following are quality control data for a manufacturing process at Kensport Chemical Company. The data show the temperature in degrees centigrade at five points in time during a manufacturing cycle. Sample x R 1 95.72 1.0 2 95.24 0.9 3 95.18 0.7 4 95.42 0.4 5 95.46 0.5 6 95.32 1.1 7 95.40 0.9 8 95.44 0.3 9 95.08 0.2 10 95.50 0.6 11 95.80 0.6 12 95.22 0.2 13 95.60 1.3 14 95.22 0.6 15 95.04 0.8 16...
The following are quality control data for a manufacturing process at Kensport Chemical Company. The data...
The following are quality control data for a manufacturing process at Kensport Chemical Company. The data show the temperature in degrees centigrade at five points in time during a manufacturing cycle. Sample x R 1 95.72 1.0 2 95.24 0.9 3 95.18 0.7 4 95.44 0.4 5 95.46 0.5 6 95.32 1.1 7 95.40 0.9 8 95.44 0.3 9 95.08 0.2 10 95.50 0.6 11 95.80 0.6 12 95.22 0.2 13 95.54 1.3 14 95.22 0.6 15 95.04 0.8 16...
The following are quality control data for a manufacturing process at Kensport Chemical Company. The data...
The following are quality control data for a manufacturing process at Kensport Chemical Company. The data show the temperature in degrees centigrade at five points in time during a manufacturing cycle. Sample x R 1 95.72 1.0 2 95.24 0.9 3 95.18 0.7 4 95.42 0.4 5 95.46 0.5 6 95.32 1.1 7 95.40 0.9 8 95.44 0.3 9 95.08 0.2 10 95.50 0.6 11 95.80 0.6 12 95.22 0.2 13 95.58 1.3 14 95.22 0.6 15 95.04 0.8 16...
An online clothing retailer monitors its order-filling process. Each week, the quality control manager selects a...
An online clothing retailer monitors its order-filling process. Each week, the quality control manager selects a random sample of size n = 350 orders that have been filled but have not shipped. The contents of the shipping container are checked against the items ordered by the customer (including color and size categories), and the order is categorized as defective or non-defective. A p chart is used to identify whether or not the process is in control. The graph below shows...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT