Question

Suppose that E[X]= E[Y] = mu, where mu is a fixed unknown number. We have independent...

Suppose that E[X]= E[Y] = mu, where mu is a fixed unknown number. We have independent simple random samples of size n each from the distribution of X and Y, respectively. Suppose that Var[X] = 2*Var[Y]. Consider the following estimators of mu:

m1 = bar{X}

m2 = bar{Y}/2

m3 = 3*bar{X}/4 + 2*bar{Y}/8

where bar{X} and bar{Y} are the sample mean of X and Y values, respectively. Which of the estimators are unbiased?

Homework Answers

Answer #1

Given that

1)

So,

So, the first estimator is unbiased.

2)

So,

So, the second estimator is not unbiased.

3)

So,

So, the third estimator is unbiased.

So, the answer is m1 and m3 are unbiased estimators.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose X and Y are independent variables with E(X) = E(Y ) = θ, Var(X) =...
Suppose X and Y are independent variables with E(X) = E(Y ) = θ, Var(X) = 2 and Var(Y ) = 4. The two estimators for θ, W1 = 1/2 X + 1/2 Y and W2 = 3/4 X + 1/4 Y . (1) Are W1 and W2 unbiased? (2) Which estimator is more efficient (smaller variance)?
Suppose that X and Y are random samples of observations from a population with mean μ...
Suppose that X and Y are random samples of observations from a population with mean μ and variance σ2. Consider the following two unbiased point estimators of μ. A = (2/3)X + (1/3)Y B = (5/4)X - (1/4)Y Find variance of A. Var(A) and Var(B) Efficient and unbiased point estimator for μ is = ?
VERY URGENT !!!! Suppose that X and Y are random samples of observations from a population...
VERY URGENT !!!! Suppose that X and Y are random samples of observations from a population with mean μ and variance σ2. Consider the following two unbiased point estimators of μ. A = (7/4)X - (3/4)Y    B = (1/3)X + (2/3)Y [Give your answers as ratio (eg: as number1 / number2 ) and DO NOT make any cancellation]   1.    Find variance of A. Var(A) =(Answer)*σ2 2.    Find variance of B. Var(B) =(Answer)*σ2 3. Efficient and unbiased point...
given x,y are independent random variable. i.e PxY(X,Y)=PX(X).PY(Y). Prove that (1) E(XK.YL)=E(XK).E(YL). Where K,L are integer(1,2,3-----)...
given x,y are independent random variable. i.e PxY(X,Y)=PX(X).PY(Y). Prove that (1) E(XK.YL)=E(XK).E(YL). Where K,L are integer(1,2,3-----) (2) Var(x.y)= var(x).var(y).
For independent X and Y, we have probability density function for them where pdf of X...
For independent X and Y, we have probability density function for them where pdf of X is f(x) = ne^-nx and pdf of Y is f(y) = me^-my. (x and y greater than 0). Let M1=max(X,Y) and M2=min(X,Y). Find cov(M2,M1).
For independent X and Y, we have probability density function for them where pdf of X...
For independent X and Y, we have probability density function for them where pdf of X is f(x) = ne^-nx and pdf of Y is f(y) = me^-my. (x and y greater than 0). Let M1=max(X,Y) and M2=min(X,Y). Find cov(M2,M1).
For independent X and Y, we have probability density function for them where pdf of X...
For independent X and Y, we have probability density function for them where pdf of X is f(x) = ne^-nx and pdf of Y is f(y) = me^-my. (x and y greater than 0). Let M1=max(X,Y) and M2=min(X,Y). Find cov(M2,M1).
The random variable W = X – 3Y + Z + 2 where X, Y and...
The random variable W = X – 3Y + Z + 2 where X, Y and Z are three independent Normal random variables, with E[X]=E[Y]=E[Z]=2 and Var[X]=9,Var[Y]=1,Var[Z]=3. The pdf of W is: Uniform Poisson Binomial Normal None of the other pdfs.
6. Let d= X -Y, where X and Y are random variables with normal distribution, and...
6. Let d= X -Y, where X and Y are random variables with normal distribution, and X and Y are independent random variables. Assume that you know both the mean and variance of   X and Y, if you have random samples from X and Y with equal sample size, what is the sampling distribution for the sample means of d(assuming X and Y are independent)?
Suppose we have the following values for the linear function relating X and Y (where Y...
Suppose we have the following values for the linear function relating X and Y (where Y is the dependent variable and X is the independent variable: X Y 0 45 1 25 2 5 What is the value of the slope for this straight line?